Spaces:
Sleeping
Sleeping
File size: 23,770 Bytes
09a0b53 ab8d4bc 09a0b53 7370048 dd92890 7370048 3cf95b0 dfecac2 3cf95b0 f8873d7 3cf95b0 7370048 f7afb44 4839711 7370048 de3ef7d 7370048 ab8d4bc 71c8985 f8873d7 7370048 f8873d7 7370048 ab8d4bc 7370048 3cf95b0 de3ef7d 3cf95b0 7370048 f7afb44 6ad8bdc ab8d4bc f7afb44 ab8d4bc 7370048 3cf95b0 7370048 ab8d4bc 7370048 f7afb44 9c89976 ab8d4bc 7370048 f7afb44 ab8d4bc f7afb44 7370048 801f405 7370048 f7afb44 801f405 f7afb44 7370048 bfe5a86 9370b00 f7afb44 bfe5a86 f7afb44 de3ef7d 801f405 ab8d4bc de3ef7d 7370048 de3ef7d 7370048 f7afb44 3cf95b0 7370048 3cf95b0 de3ef7d 7370048 ab8d4bc 7370048 9370b00 dfecac2 7370048 de3ef7d ab8d4bc de3ef7d 7370048 ab8d4bc f7afb44 7370048 f7afb44 7370048 ab8d4bc 7370048 3cf95b0 7370048 3cf95b0 7370048 9370b00 7370048 de3ef7d f7afb44 ab8d4bc 9370b00 de3ef7d 7370048 f7afb44 de3ef7d 7370048 de3ef7d 7370048 de3ef7d 7370048 ab8d4bc 7370048 de3ef7d 7370048 ab8d4bc 7370048 ab8d4bc 7370048 ab8d4bc 7370048 f7afb44 7370048 de3ef7d 7370048 de3ef7d 7370048 ab8d4bc 7370048 ab8d4bc 7370048 ab8d4bc 7370048 f7afb44 7370048 ab8d4bc 7370048 9370b00 7370048 de3ef7d 7370048 ab8d4bc 7370048 f8873d7 7370048 f8873d7 7370048 de3ef7d 7370048 ab8d4bc 7370048 801f405 7370048 de3ef7d 7370048 ab8d4bc 7370048 801f405 7370048 de3ef7d 7370048 ab8d4bc 7370048 ab8d4bc f7afb44 7370048 801f405 7370048 de3ef7d 7370048 ab8d4bc de3ef7d f8873d7 ab8d4bc 7370048 ab8d4bc 7370048 801f405 7370048 de3ef7d 7370048 ab8d4bc 7370048 f8873d7 7370048 ab8d4bc de3ef7d 7370048 ab8d4bc de3ef7d 7370048 ddd0e04 09a0b53 7370048 09a0b53 7370048 de3ef7d ab8d4bc de3ef7d 7370048 ab8d4bc 7370048 3cf95b0 7370048 ab8d4bc f7afb44 7370048 ab8d4bc 7370048 ab8d4bc 7370048 ab8d4bc 7370048 0e6ab0f 7370048 9370b00 7370048 ab8d4bc 7370048 f7afb44 7370048 ab8d4bc 7370048 de3ef7d 7370048 ddd0e04 7370048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# ------------------------------
# UniversalResearch AI System + LADDER (Tufa Labs)
# ------------------------------
import logging
import os
import re
import hashlib
import json
import time
import sys
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional, Sequence
import chromadb
import requests
import streamlit as st
# LangChain and LangGraph imports
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from langchain.tools.retriever import create_retriever_tool
# Increase Python's recursion limit if needed
sys.setrecursionlimit(10000)
# ------------------------------
# Logging Configuration
# ------------------------------
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s"
)
logger = logging.getLogger(__name__)
# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
"""
Stores the messages and context for each step in the workflow.
'messages' contain the conversation so far,
'context' can hold domain-specific data, 'metadata' for additional info.
"""
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
# ------------------------------
# Configuration
# ------------------------------
class ResearchConfig:
"""
Universal configuration for the research system, referencing Tufa Labs' LADDER approach.
Make sure to set DEEPSEEK_API_KEY in your environment or HF Space secrets
to enable the external LLM calls.
"""
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
# Example map for featured research docs
DOCUMENT_MAP = {
"Sample Research Document 1": "Topic A Overview",
"Sample Research Document 2": "Topic B Analysis",
"Sample Research Document 3": "Topic C Innovations"
}
# Template referencing a general approach for analyzing research documents
ANALYSIS_TEMPLATE = (
"Analyze the following research documents with scientific rigor:\n{context}\n\n"
"Using the LADDER approach from Tufa Labs, the model should:\n"
"1. Break down the problem into simpler subproblems.\n"
"2. Iteratively refine the solution.\n"
"3. Provide thorough analysis, including:\n"
" a. Key Contributions\n"
" b. Novel Methodologies\n"
" c. Empirical Results (with metrics)\n"
" d. Potential Applications\n"
" e. Limitations & Future Directions\n\n"
"Format your response in Markdown with LaTeX mathematical notation where applicable."
)
# Early check for missing API key
if not ResearchConfig.DEEPSEEK_API_KEY:
st.error(
"""**Research Portal Configuration Required**
1. Obtain your DeepSeek API key from [platform.deepseek.com](https://platform.deepseek.com/)
2. Set the secret: `DEEPSEEK_API_KEY` in your Space settings
3. Rebuild your deployment."""
)
st.stop()
# ------------------------------
# Universal Document Processing
# ------------------------------
class UniversalDocumentManager:
"""
Manages creation of document collections for any research domain.
Uses OpenAI embeddings for vector-based semantic search.
"""
def __init__(self) -> None:
try:
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
logger.info("Initialized PersistentClient for Chroma.")
except Exception as e:
logger.error(f"Error initializing PersistentClient: {e}")
self.client = chromadb.Client() # Fallback to in-memory client
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
"""
Splits documents into manageable chunks and stores them in a Chroma collection.
"""
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
try:
docs = splitter.create_documents(documents)
logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.")
except Exception as e:
logger.error(f"Error splitting documents: {e}")
raise e
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs]
)
def _document_id(self, content: str) -> str:
"""
Generates a unique document ID using SHA256 + timestamp.
"""
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
# Create example collections (can be replaced with domain-specific docs)
udm = UniversalDocumentManager()
research_docs = udm.create_collection([
"Research Report: Novel AI Techniques in Renewable Energy",
"Academic Paper: Advances in Quantum Computing for Data Analysis",
"Survey: Emerging Trends in Biomedical Research"
], "research")
development_docs = udm.create_collection([
"Project Update: New Algorithms in Software Engineering",
"Development Report: Innovations in User Interface Design",
"Case Study: Agile Methodologies in Large-Scale Software Projects"
], "development")
# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
"""
Provides retrieval methods for multiple domains (research, development, etc.).
Uses MMR (Maximal Marginal Relevance) or similarity-based retrieval from Chroma.
"""
def __init__(self) -> None:
try:
self.research_retriever = research_docs.as_retriever(
search_type="mmr",
search_kwargs={'k': 4, 'fetch_k': 20, 'lambda_mult': 0.85}
)
self.development_retriever = development_docs.as_retriever(
search_type="similarity",
search_kwargs={'k': 3}
)
logger.info("Initialized retrievers for research and development domains.")
except Exception as e:
logger.error(f"Error initializing retrievers: {e}")
raise e
def retrieve(self, query: str, domain: str) -> List[Any]:
"""
Retrieves documents for a given query and domain.
Defaults to 'research' if domain is unrecognized.
"""
try:
if domain == "research":
return self.research_retriever.invoke(query)
elif domain == "development":
return self.development_retriever.invoke(query)
else:
logger.warning(f"Domain '{domain}' not recognized. Defaulting to research.")
return self.research_retriever.invoke(query)
except Exception as e:
logger.error(f"Retrieval error for domain '{domain}': {e}")
return []
retriever = ResearchRetriever()
# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
"""
Sends parallel requests to the DeepSeek API to reduce failures.
Implements a consensus mechanism to pick the most comprehensive response.
"""
def __init__(self) -> None:
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
def process_query(self, prompt: str) -> Dict:
"""
Processes a query by sending multiple parallel requests (triple redundancy).
"""
futures = []
for _ in range(3):
futures.append(self.executor.submit(self._execute_api_request, prompt))
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
logger.error(f"Error in API request: {e}")
st.error(f"Processing Error: {str(e)}")
return self._consensus_check(results)
def _execute_api_request(self, prompt: str) -> Dict:
"""
Executes a single request to the DeepSeek endpoint.
"""
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
payload = {
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as a Senior Researcher:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 1500,
"top_p": 0.9
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=45
)
response.raise_for_status()
logger.info("DeepSeek API request successful.")
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"DeepSeek API request failed: {e}")
return {"error": str(e)}
def _consensus_check(self, results: List[Dict]) -> Dict:
"""
Chooses the best response by comparing the length of the message content.
"""
valid_results = [r for r in results if "error" not in r]
if not valid_results:
logger.error("All API requests failed.")
return {"error": "All API requests failed"}
return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
# ------------------------------
# Research Workflow Engine (LADDER Integration)
# ------------------------------
class ResearchWorkflow:
"""
Defines a multi-step workflow using LangGraph with Tufa Labs' LADDER approach:
1. Ingest Query
2. Retrieve Documents
3. Analyze Content
4. Validate Output
5. Refine (Recursive Self-Learning + TTRL)
The 'refine_results' node applies LADDER’s idea of iteratively
breaking down problems and re-solving them with no external data.
"""
def __init__(self) -> None:
self.processor = CognitiveProcessor()
self.workflow = StateGraph(AgentState)
self._build_workflow()
self.app = self.workflow.compile()
def _build_workflow(self) -> None:
# Define workflow nodes
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
# Entry point and transitions
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
def ingest_query(self, state: AgentState) -> Dict:
"""
Ingests the research query and initializes the LADDER-based refinement counter.
"""
try:
query = state["messages"][-1].content
new_context = {"raw_query": query, "refine_count": 0}
logger.info("Query ingested.")
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": new_context,
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: AgentState) -> Dict:
"""
Retrieves relevant documents based on the query.
The system can handle any domain (math, code generation, theorem proving, etc.).
"""
try:
query = state["context"]["raw_query"]
docs = retriever.retrieve(query, "research")
logger.info(f"Retrieved {len(docs)} documents for query.")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {
"documents": docs,
"retrieval_time": time.time(),
"refine_count": state["context"].get("refine_count", 0)
}
}
except Exception as e:
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: AgentState) -> Dict:
"""
Analyzes the retrieved documents using Tufa Labs' LADDER principles:
- Break down the documents,
- Provide structured analysis,
- Return a refined solution.
"""
try:
docs = state["context"].get("documents", [])
docs_text = "\n\n".join([d.page_content for d in docs])
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
response = self.processor.process_query(prompt)
if "error" in response:
return self._error_state(response["error"])
logger.info("Content analysis completed.")
return {
"messages": [
AIMessage(
content=response.get('choices', [{}])[0].get('message', {}).get('content', '')
)
],
"context": {
"analysis": response,
"refine_count": state["context"].get("refine_count", 0)
}
}
except Exception as e:
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: AgentState) -> Dict:
"""
Validates the analysis. If invalid, the system can refine the solution
(potentially multiple times) using LADDER’s iterative approach.
"""
analysis = state["messages"][-1].content
validation_prompt = (
f"Validate this analysis:\n{analysis}\n\n"
"Check for:\n1. Technical accuracy\n2. Citation support\n3. Logical consistency\n4. Methodological soundness\n\n"
"Respond with 'VALID' or 'INVALID'."
)
response = self.processor.process_query(validation_prompt)
logger.info("Output validation completed.")
return {
"messages": [
AIMessage(
content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}"
)
]
}
def refine_results(self, state: AgentState) -> Dict:
"""
Applies Tufa Labs' LADDER principle:
- Recursively break down the problem,
- Re-solve with no external data,
- Potentially leverage TTRL for dynamic updates.
This method increments a refinement counter to avoid infinite recursion.
"""
current_count = state["context"].get("refine_count", 0)
state["context"]["refine_count"] = current_count + 1
logger.info(f"LADDER refinement iteration: {state['context']['refine_count']}")
refinement_prompt = (
f"Refine this analysis using LADDER's self-improvement approach:\n"
f"{state['messages'][-1].content}\n\n"
"Focus on breaking down complex points further and re-solving them.\n"
"Enhance technical precision, empirical grounding, and theoretical coherence."
)
response = self.processor.process_query(refinement_prompt)
logger.info("Refinement completed.")
return {
"messages": [
AIMessage(
content=response.get('choices', [{}])[0].get('message', {}).get('content', '')
)
],
"context": state["context"]
}
def _quality_check(self, state: AgentState) -> str:
"""
Determines if the analysis is 'valid' or 'invalid'.
If refine_count exceeds 3, forcibly accept the result to prevent infinite loops.
"""
refine_count = state["context"].get("refine_count", 0)
if refine_count >= 3:
logger.warning("Refinement limit reached. Forcing valid outcome to prevent infinite recursion.")
return "valid"
content = state["messages"][-1].content
return "valid" if "VALID" in content else "invalid"
def _error_state(self, message: str) -> Dict:
"""
Returns an error state if any node fails.
"""
logger.error(message)
return {
"messages": [AIMessage(content=f"❌ {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
# ------------------------------
# Research Interface (Streamlit UI)
# ------------------------------
class ResearchInterface:
"""
Provides a Streamlit-based interface for the UniversalResearch AI with LADDER.
The system is domain-agnostic, handling math, code generation, theorem proving, etc.
"""
def __init__(self) -> None:
self.workflow = ResearchWorkflow()
self._initialize_interface()
def _initialize_interface(self) -> None:
st.set_page_config(
page_title="UniversalResearch AI (LADDER)",
layout="wide",
initial_sidebar_state="expanded"
)
self._inject_styles()
self._build_sidebar()
self._build_main_interface()
def _inject_styles(self) -> None:
st.markdown(
"""
<style>
:root {
--primary: #2ecc71;
--secondary: #3498db;
--background: #0a0a0a;
--text: #ecf0f1;
}
.stApp {
background: var(--background);
color: var(--text);
font-family: 'Roboto', sans-serif;
}
.stTextArea textarea {
background: #1a1a1a !important;
color: var(--text) !important;
border: 2px solid var(--secondary);
border-radius: 8px;
padding: 1rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--primary), var(--secondary));
border: none;
border-radius: 8px;
padding: 1rem 2rem;
transition: all 0.3s;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
}
.stExpander {
background: #1a1a1a;
border: 1px solid #2a2a2a;
border-radius: 8px;
margin: 1rem 0;
}
</style>
""",
unsafe_allow_html=True
)
def _build_sidebar(self) -> None:
with st.sidebar:
st.title("🔍 Research Database (LADDER)")
st.subheader("Featured Research Topics")
for title, short in ResearchConfig.DOCUMENT_MAP.items():
with st.expander(short):
st.markdown(f"```\n{title}\n```")
st.subheader("Analysis Metrics")
st.metric("Vector Collections", 2)
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
def _build_main_interface(self) -> None:
st.title("🧠 UniversalResearch AI with Tufa Labs’ LADDER")
st.write(
"Leverage the power of Tufa Labs' LADDER approach for recursive self-improvement. "
)
query = st.text_area(
"Research Query:",
height=200,
placeholder="Enter a research question, from math to code generation..."
)
if st.button("Execute Analysis", type="primary"):
self._execute_analysis(query)
def _execute_analysis(self, query: str) -> None:
try:
with st.spinner("Initializing LADDER-based Analysis..."):
# The recursion_limit config ensures we can handle multiple refine iterations
results = self.workflow.app.stream({
"messages": [HumanMessage(content=query)],
"context": {},
"metadata": {}
}, {"recursion_limit": 100})
for event in results:
self._render_event(event)
st.success("✅ Analysis Completed Successfully")
except Exception as e:
logger.error(f"Workflow execution failed: {e}")
st.error(
f"""**Analysis Failed**
{str(e)}
Potential issues:
- Complex query structure
- Document correlation failure
- Temporal processing constraints"""
)
def _render_event(self, event: Dict) -> None:
"""
Renders each event in the Streamlit UI.
"""
if 'ingest' in event:
with st.container():
st.success("✅ Query Ingested")
elif 'retrieve' in event:
with st.container():
docs = event['retrieve']['context'].get('documents', [])
st.info(f"📚 Retrieved {len(docs)} documents")
with st.expander("View Retrieved Documents", expanded=False):
for idx, doc in enumerate(docs, start=1):
st.markdown(f"**Document {idx}**")
st.code(doc.page_content, language='text')
elif 'analyze' in event:
with st.container():
content = event['analyze']['messages'][0].content
with st.expander("Research Analysis Report", expanded=True):
st.markdown(content)
elif 'validate' in event:
with st.container():
content = event['validate']['messages'][0].content
if "VALID" in content:
st.success("✅ Validation Passed")
with st.expander("View Validated Analysis", expanded=True):
# Remove "Validation: ..." for a cleaner final result
st.markdown(content.split("Validation:")[0])
else:
st.warning("⚠️ Validation Issues Detected")
with st.expander("View Validation Details", expanded=True):
st.markdown(content)
if __name__ == "__main__":
ResearchInterface()
|