File size: 23,770 Bytes
09a0b53
ab8d4bc
09a0b53
7370048
dd92890
7370048
3cf95b0
dfecac2
3cf95b0
f8873d7
3cf95b0
7370048
 
f7afb44
4839711
7370048
de3ef7d
7370048
 
 
 
 
 
 
 
 
 
 
 
ab8d4bc
71c8985
f8873d7
7370048
 
 
 
f8873d7
7370048
 
 
 
 
 
 
 
ab8d4bc
 
 
 
 
7370048
 
 
3cf95b0
 
de3ef7d
3cf95b0
7370048
f7afb44
6ad8bdc
ab8d4bc
 
 
f7afb44
ab8d4bc
7370048
3cf95b0
 
7370048
 
ab8d4bc
 
7370048
f7afb44
 
 
9c89976
ab8d4bc
 
7370048
f7afb44
ab8d4bc
 
 
 
 
 
 
 
 
f7afb44
7370048
 
801f405
7370048
 
 
f7afb44
801f405
f7afb44
7370048
 
bfe5a86
9370b00
f7afb44
bfe5a86
f7afb44
de3ef7d
801f405
ab8d4bc
de3ef7d
 
 
7370048
 
de3ef7d
7370048
 
f7afb44
3cf95b0
 
7370048
3cf95b0
de3ef7d
7370048
 
ab8d4bc
7370048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9370b00
dfecac2
7370048
de3ef7d
ab8d4bc
de3ef7d
7370048
 
ab8d4bc
f7afb44
 
 
 
 
7370048
 
f7afb44
 
 
 
7370048
 
 
 
 
 
 
ab8d4bc
 
7370048
 
3cf95b0
7370048
 
 
 
 
 
 
3cf95b0
7370048
9370b00
7370048
 
 
 
de3ef7d
f7afb44
ab8d4bc
9370b00
de3ef7d
7370048
 
 
 
 
f7afb44
 
de3ef7d
7370048
 
de3ef7d
7370048
de3ef7d
7370048
 
 
 
 
ab8d4bc
 
7370048
 
 
 
de3ef7d
7370048
 
ab8d4bc
7370048
 
ab8d4bc
7370048
 
 
 
 
 
 
 
 
 
 
 
 
 
ab8d4bc
7370048
 
 
 
 
 
 
 
 
 
f7afb44
7370048
 
 
 
 
de3ef7d
7370048
 
 
 
 
de3ef7d
7370048
 
 
 
 
 
 
 
 
ab8d4bc
7370048
 
 
 
 
 
 
 
ab8d4bc
7370048
 
 
ab8d4bc
 
 
 
 
 
 
 
 
7370048
 
 
 
 
 
 
 
f7afb44
7370048
 
 
 
 
ab8d4bc
 
7370048
 
 
 
 
 
 
9370b00
7370048
 
de3ef7d
7370048
 
ab8d4bc
7370048
 
 
f8873d7
7370048
 
 
f8873d7
7370048
 
 
 
de3ef7d
7370048
 
ab8d4bc
 
7370048
 
 
 
 
 
 
801f405
 
 
 
 
7370048
 
 
de3ef7d
7370048
 
ab8d4bc
 
 
 
7370048
 
 
 
 
 
 
 
 
 
801f405
 
 
 
 
 
 
 
 
7370048
 
 
de3ef7d
7370048
 
ab8d4bc
 
7370048
 
 
ab8d4bc
 
f7afb44
7370048
 
 
 
801f405
 
 
 
 
7370048
de3ef7d
7370048
 
ab8d4bc
 
 
 
 
 
de3ef7d
f8873d7
 
ab8d4bc
 
7370048
ab8d4bc
 
 
 
7370048
 
 
 
801f405
 
 
 
 
7370048
 
de3ef7d
7370048
 
ab8d4bc
 
7370048
f8873d7
 
 
 
7370048
ab8d4bc
de3ef7d
7370048
 
ab8d4bc
de3ef7d
7370048
 
 
 
 
 
ddd0e04
09a0b53
7370048
09a0b53
7370048
de3ef7d
ab8d4bc
 
de3ef7d
7370048
 
 
 
 
 
ab8d4bc
7370048
 
3cf95b0
7370048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab8d4bc
f7afb44
7370048
 
 
 
 
 
 
 
ab8d4bc
 
 
 
7370048
 
 
ab8d4bc
7370048
 
 
 
 
 
ab8d4bc
 
7370048
 
 
 
0e6ab0f
7370048
 
 
 
 
 
 
 
 
 
 
 
9370b00
7370048
 
ab8d4bc
 
 
7370048
 
 
 
 
 
 
 
 
 
 
 
 
 
f7afb44
7370048
 
 
 
 
 
 
ab8d4bc
7370048
de3ef7d
7370048
 
 
ddd0e04
 
7370048
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# ------------------------------
# UniversalResearch AI System + LADDER (Tufa Labs)
# ------------------------------
import logging
import os
import re
import hashlib
import json
import time
import sys
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional, Sequence

import chromadb
import requests
import streamlit as st

# LangChain and LangGraph imports
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from langchain.tools.retriever import create_retriever_tool

# Increase Python's recursion limit if needed
sys.setrecursionlimit(10000)

# ------------------------------
# Logging Configuration
# ------------------------------
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(message)s"
)
logger = logging.getLogger(__name__)

# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
    """
    Stores the messages and context for each step in the workflow.
    'messages' contain the conversation so far,
    'context' can hold domain-specific data, 'metadata' for additional info.
    """
    messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
    context: Dict[str, Any]
    metadata: Dict[str, Any]

# ------------------------------
# Configuration
# ------------------------------
class ResearchConfig:
    """
    Universal configuration for the research system, referencing Tufa Labs' LADDER approach.

    Make sure to set DEEPSEEK_API_KEY in your environment or HF Space secrets
    to enable the external LLM calls.
    """
    DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
    CHROMA_PATH = "chroma_db"
    CHUNK_SIZE = 512
    CHUNK_OVERLAP = 64
    MAX_CONCURRENT_REQUESTS = 5
    EMBEDDING_DIMENSIONS = 1536

    # Example map for featured research docs
    DOCUMENT_MAP = {
        "Sample Research Document 1": "Topic A Overview",
        "Sample Research Document 2": "Topic B Analysis",
        "Sample Research Document 3": "Topic C Innovations"
    }

    # Template referencing a general approach for analyzing research documents
    ANALYSIS_TEMPLATE = (
        "Analyze the following research documents with scientific rigor:\n{context}\n\n"
        "Using the LADDER approach from Tufa Labs, the model should:\n"
        "1. Break down the problem into simpler subproblems.\n"
        "2. Iteratively refine the solution.\n"
        "3. Provide thorough analysis, including:\n"
        "   a. Key Contributions\n"
        "   b. Novel Methodologies\n"
        "   c. Empirical Results (with metrics)\n"
        "   d. Potential Applications\n"
        "   e. Limitations & Future Directions\n\n"
        "Format your response in Markdown with LaTeX mathematical notation where applicable."
    )

# Early check for missing API key
if not ResearchConfig.DEEPSEEK_API_KEY:
    st.error(
        """**Research Portal Configuration Required**  
1. Obtain your DeepSeek API key from [platform.deepseek.com](https://platform.deepseek.com/)  
2. Set the secret: `DEEPSEEK_API_KEY` in your Space settings  
3. Rebuild your deployment."""
    )
    st.stop()

# ------------------------------
# Universal Document Processing
# ------------------------------
class UniversalDocumentManager:
    """
    Manages creation of document collections for any research domain.
    Uses OpenAI embeddings for vector-based semantic search.
    """
    def __init__(self) -> None:
        try:
            self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
            logger.info("Initialized PersistentClient for Chroma.")
        except Exception as e:
            logger.error(f"Error initializing PersistentClient: {e}")
            self.client = chromadb.Client()  # Fallback to in-memory client

        self.embeddings = OpenAIEmbeddings(
            model="text-embedding-3-large",
            dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
        )

    def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
        """
        Splits documents into manageable chunks and stores them in a Chroma collection.
        """
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=ResearchConfig.CHUNK_SIZE,
            chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
            separators=["\n\n", "\n", "|||"]
        )
        try:
            docs = splitter.create_documents(documents)
            logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.")
        except Exception as e:
            logger.error(f"Error splitting documents: {e}")
            raise e

        return Chroma.from_documents(
            documents=docs,
            embedding=self.embeddings,
            client=self.client,
            collection_name=collection_name,
            ids=[self._document_id(doc.page_content) for doc in docs]
        )

    def _document_id(self, content: str) -> str:
        """
        Generates a unique document ID using SHA256 + timestamp.
        """
        return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"

# Create example collections (can be replaced with domain-specific docs)
udm = UniversalDocumentManager()
research_docs = udm.create_collection([
    "Research Report: Novel AI Techniques in Renewable Energy",
    "Academic Paper: Advances in Quantum Computing for Data Analysis",
    "Survey: Emerging Trends in Biomedical Research"
], "research")

development_docs = udm.create_collection([
    "Project Update: New Algorithms in Software Engineering",
    "Development Report: Innovations in User Interface Design",
    "Case Study: Agile Methodologies in Large-Scale Software Projects"
], "development")

# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
    """
    Provides retrieval methods for multiple domains (research, development, etc.).
    Uses MMR (Maximal Marginal Relevance) or similarity-based retrieval from Chroma.
    """
    def __init__(self) -> None:
        try:
            self.research_retriever = research_docs.as_retriever(
                search_type="mmr",
                search_kwargs={'k': 4, 'fetch_k': 20, 'lambda_mult': 0.85}
            )
            self.development_retriever = development_docs.as_retriever(
                search_type="similarity",
                search_kwargs={'k': 3}
            )
            logger.info("Initialized retrievers for research and development domains.")
        except Exception as e:
            logger.error(f"Error initializing retrievers: {e}")
            raise e

    def retrieve(self, query: str, domain: str) -> List[Any]:
        """
        Retrieves documents for a given query and domain.
        Defaults to 'research' if domain is unrecognized.
        """
        try:
            if domain == "research":
                return self.research_retriever.invoke(query)
            elif domain == "development":
                return self.development_retriever.invoke(query)
            else:
                logger.warning(f"Domain '{domain}' not recognized. Defaulting to research.")
                return self.research_retriever.invoke(query)
        except Exception as e:
            logger.error(f"Retrieval error for domain '{domain}': {e}")
            return []

retriever = ResearchRetriever()

# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
    """
    Sends parallel requests to the DeepSeek API to reduce failures.
    Implements a consensus mechanism to pick the most comprehensive response.
    """
    def __init__(self) -> None:
        self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
        self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]

    def process_query(self, prompt: str) -> Dict:
        """
        Processes a query by sending multiple parallel requests (triple redundancy).
        """
        futures = []
        for _ in range(3):
            futures.append(self.executor.submit(self._execute_api_request, prompt))

        results = []
        for future in as_completed(futures):
            try:
                results.append(future.result())
            except Exception as e:
                logger.error(f"Error in API request: {e}")
                st.error(f"Processing Error: {str(e)}")

        return self._consensus_check(results)

    def _execute_api_request(self, prompt: str) -> Dict:
        """
        Executes a single request to the DeepSeek endpoint.
        """
        headers = {
            "Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
            "Content-Type": "application/json",
            "X-Research-Session": self.session_id
        }
        payload = {
            "model": "deepseek-chat",
            "messages": [{
                "role": "user",
                "content": f"Respond as a Senior Researcher:\n{prompt}"
            }],
            "temperature": 0.7,
            "max_tokens": 1500,
            "top_p": 0.9
        }
        try:
            response = requests.post(
                "https://api.deepseek.com/v1/chat/completions",
                headers=headers,
                json=payload,
                timeout=45
            )
            response.raise_for_status()
            logger.info("DeepSeek API request successful.")
            return response.json()
        except requests.exceptions.RequestException as e:
            logger.error(f"DeepSeek API request failed: {e}")
            return {"error": str(e)}

    def _consensus_check(self, results: List[Dict]) -> Dict:
        """
        Chooses the best response by comparing the length of the message content.
        """
        valid_results = [r for r in results if "error" not in r]
        if not valid_results:
            logger.error("All API requests failed.")
            return {"error": "All API requests failed"}
        return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))

# ------------------------------
# Research Workflow Engine (LADDER Integration)
# ------------------------------
class ResearchWorkflow:
    """
    Defines a multi-step workflow using LangGraph with Tufa Labs' LADDER approach:
    1. Ingest Query
    2. Retrieve Documents
    3. Analyze Content
    4. Validate Output
    5. Refine (Recursive Self-Learning + TTRL)
    
    The 'refine_results' node applies LADDER’s idea of iteratively
    breaking down problems and re-solving them with no external data.
    """
    def __init__(self) -> None:
        self.processor = CognitiveProcessor()
        self.workflow = StateGraph(AgentState)
        self._build_workflow()
        self.app = self.workflow.compile()

    def _build_workflow(self) -> None:
        # Define workflow nodes
        self.workflow.add_node("ingest", self.ingest_query)
        self.workflow.add_node("retrieve", self.retrieve_documents)
        self.workflow.add_node("analyze", self.analyze_content)
        self.workflow.add_node("validate", self.validate_output)
        self.workflow.add_node("refine", self.refine_results)

        # Entry point and transitions
        self.workflow.set_entry_point("ingest")
        self.workflow.add_edge("ingest", "retrieve")
        self.workflow.add_edge("retrieve", "analyze")
        self.workflow.add_conditional_edges(
            "analyze",
            self._quality_check,
            {"valid": "validate", "invalid": "refine"}
        )
        self.workflow.add_edge("validate", END)
        self.workflow.add_edge("refine", "retrieve")

    def ingest_query(self, state: AgentState) -> Dict:
        """
        Ingests the research query and initializes the LADDER-based refinement counter.
        """
        try:
            query = state["messages"][-1].content
            new_context = {"raw_query": query, "refine_count": 0}
            logger.info("Query ingested.")
            return {
                "messages": [AIMessage(content="Query ingested successfully")],
                "context": new_context,
                "metadata": {"timestamp": datetime.now().isoformat()}
            }
        except Exception as e:
            return self._error_state(f"Ingestion Error: {str(e)}")

    def retrieve_documents(self, state: AgentState) -> Dict:
        """
        Retrieves relevant documents based on the query. 
        The system can handle any domain (math, code generation, theorem proving, etc.).
        """
        try:
            query = state["context"]["raw_query"]
            docs = retriever.retrieve(query, "research")
            logger.info(f"Retrieved {len(docs)} documents for query.")
            return {
                "messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
                "context": {
                    "documents": docs,
                    "retrieval_time": time.time(),
                    "refine_count": state["context"].get("refine_count", 0)
                }
            }
        except Exception as e:
            return self._error_state(f"Retrieval Error: {str(e)}")

    def analyze_content(self, state: AgentState) -> Dict:
        """
        Analyzes the retrieved documents using Tufa Labs' LADDER principles:
        - Break down the documents,
        - Provide structured analysis,
        - Return a refined solution.
        """
        try:
            docs = state["context"].get("documents", [])
            docs_text = "\n\n".join([d.page_content for d in docs])
            prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
            response = self.processor.process_query(prompt)
            if "error" in response:
                return self._error_state(response["error"])
            logger.info("Content analysis completed.")
            return {
                "messages": [
                    AIMessage(
                        content=response.get('choices', [{}])[0].get('message', {}).get('content', '')
                    )
                ],
                "context": {
                    "analysis": response,
                    "refine_count": state["context"].get("refine_count", 0)
                }
            }
        except Exception as e:
            return self._error_state(f"Analysis Error: {str(e)}")

    def validate_output(self, state: AgentState) -> Dict:
        """
        Validates the analysis. If invalid, the system can refine the solution
        (potentially multiple times) using LADDER’s iterative approach.
        """
        analysis = state["messages"][-1].content
        validation_prompt = (
            f"Validate this analysis:\n{analysis}\n\n"
            "Check for:\n1. Technical accuracy\n2. Citation support\n3. Logical consistency\n4. Methodological soundness\n\n"
            "Respond with 'VALID' or 'INVALID'."
        )
        response = self.processor.process_query(validation_prompt)
        logger.info("Output validation completed.")
        return {
            "messages": [
                AIMessage(
                    content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}"
                )
            ]
        }

    def refine_results(self, state: AgentState) -> Dict:
        """
        Applies Tufa Labs' LADDER principle:
        - Recursively break down the problem,
        - Re-solve with no external data,
        - Potentially leverage TTRL for dynamic updates.

        This method increments a refinement counter to avoid infinite recursion.
        """
        current_count = state["context"].get("refine_count", 0)
        state["context"]["refine_count"] = current_count + 1
        logger.info(f"LADDER refinement iteration: {state['context']['refine_count']}")

        refinement_prompt = (
            f"Refine this analysis using LADDER's self-improvement approach:\n"
            f"{state['messages'][-1].content}\n\n"
            "Focus on breaking down complex points further and re-solving them.\n"
            "Enhance technical precision, empirical grounding, and theoretical coherence."
        )
        response = self.processor.process_query(refinement_prompt)
        logger.info("Refinement completed.")
        return {
            "messages": [
                AIMessage(
                    content=response.get('choices', [{}])[0].get('message', {}).get('content', '')
                )
            ],
            "context": state["context"]
        }

    def _quality_check(self, state: AgentState) -> str:
        """
        Determines if the analysis is 'valid' or 'invalid'. 
        If refine_count exceeds 3, forcibly accept the result to prevent infinite loops.
        """
        refine_count = state["context"].get("refine_count", 0)
        if refine_count >= 3:
            logger.warning("Refinement limit reached. Forcing valid outcome to prevent infinite recursion.")
            return "valid"
        content = state["messages"][-1].content
        return "valid" if "VALID" in content else "invalid"

    def _error_state(self, message: str) -> Dict:
        """
        Returns an error state if any node fails. 
        """
        logger.error(message)
        return {
            "messages": [AIMessage(content=f"❌ {message}")],
            "context": {"error": True},
            "metadata": {"status": "error"}
        }

# ------------------------------
# Research Interface (Streamlit UI)
# ------------------------------
class ResearchInterface:
    """
    Provides a Streamlit-based interface for the UniversalResearch AI with LADDER. 
    The system is domain-agnostic, handling math, code generation, theorem proving, etc.
    """
    def __init__(self) -> None:
        self.workflow = ResearchWorkflow()
        self._initialize_interface()

    def _initialize_interface(self) -> None:
        st.set_page_config(
            page_title="UniversalResearch AI (LADDER)",
            layout="wide",
            initial_sidebar_state="expanded"
        )
        self._inject_styles()
        self._build_sidebar()
        self._build_main_interface()

    def _inject_styles(self) -> None:
        st.markdown(
            """
            <style>
            :root {
                --primary: #2ecc71;
                --secondary: #3498db;
                --background: #0a0a0a;
                --text: #ecf0f1;
            }
            .stApp {
                background: var(--background);
                color: var(--text);
                font-family: 'Roboto', sans-serif;
            }
            .stTextArea textarea {
                background: #1a1a1a !important;
                color: var(--text) !important;
                border: 2px solid var(--secondary);
                border-radius: 8px;
                padding: 1rem;
            }
            .stButton>button {
                background: linear-gradient(135deg, var(--primary), var(--secondary));
                border: none;
                border-radius: 8px;
                padding: 1rem 2rem;
                transition: all 0.3s;
            }
            .stButton>button:hover {
                transform: translateY(-2px);
                box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
            }
            .stExpander {
                background: #1a1a1a;
                border: 1px solid #2a2a2a;
                border-radius: 8px;
                margin: 1rem 0;
            }
            </style>
            """,
            unsafe_allow_html=True
        )

    def _build_sidebar(self) -> None:
        with st.sidebar:
            st.title("🔍 Research Database (LADDER)")
            st.subheader("Featured Research Topics")
            for title, short in ResearchConfig.DOCUMENT_MAP.items():
                with st.expander(short):
                    st.markdown(f"```\n{title}\n```")
            st.subheader("Analysis Metrics")
            st.metric("Vector Collections", 2)
            st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)

    def _build_main_interface(self) -> None:
        st.title("🧠 UniversalResearch AI with Tufa Labs’ LADDER")
        st.write(
            "Leverage the power of Tufa Labs' LADDER approach for recursive self-improvement. "
        )
        query = st.text_area(
            "Research Query:",
            height=200,
            placeholder="Enter a research question, from math to code generation..."
        )
        if st.button("Execute Analysis", type="primary"):
            self._execute_analysis(query)

    def _execute_analysis(self, query: str) -> None:
        try:
            with st.spinner("Initializing LADDER-based Analysis..."):
                # The recursion_limit config ensures we can handle multiple refine iterations
                results = self.workflow.app.stream({
                    "messages": [HumanMessage(content=query)],
                    "context": {},
                    "metadata": {}
                }, {"recursion_limit": 100})
                for event in results:
                    self._render_event(event)
                st.success("✅ Analysis Completed Successfully")
        except Exception as e:
            logger.error(f"Workflow execution failed: {e}")
            st.error(
                f"""**Analysis Failed**  
{str(e)}  
Potential issues:
- Complex query structure
- Document correlation failure
- Temporal processing constraints"""
            )

    def _render_event(self, event: Dict) -> None:
        """
        Renders each event in the Streamlit UI.
        """
        if 'ingest' in event:
            with st.container():
                st.success("✅ Query Ingested")
        elif 'retrieve' in event:
            with st.container():
                docs = event['retrieve']['context'].get('documents', [])
                st.info(f"📚 Retrieved {len(docs)} documents")
                with st.expander("View Retrieved Documents", expanded=False):
                    for idx, doc in enumerate(docs, start=1):
                        st.markdown(f"**Document {idx}**")
                        st.code(doc.page_content, language='text')
        elif 'analyze' in event:
            with st.container():
                content = event['analyze']['messages'][0].content
                with st.expander("Research Analysis Report", expanded=True):
                    st.markdown(content)
        elif 'validate' in event:
            with st.container():
                content = event['validate']['messages'][0].content
                if "VALID" in content:
                    st.success("✅ Validation Passed")
                    with st.expander("View Validated Analysis", expanded=True):
                        # Remove "Validation: ..." for a cleaner final result
                        st.markdown(content.split("Validation:")[0])
                else:
                    st.warning("⚠️ Validation Issues Detected")
                    with st.expander("View Validation Details", expanded=True):
                        st.markdown(content)

if __name__ == "__main__":
    ResearchInterface()