mgbam commited on
Commit
9370b00
·
verified ·
1 Parent(s): dfecac2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +315 -332
app.py CHANGED
@@ -1,175 +1,148 @@
1
  # ------------------------------
2
- # Imports & Dependencies
3
  # ------------------------------
4
  from langchain_openai import OpenAIEmbeddings
5
  from langchain_community.vectorstores import Chroma
 
6
  from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
7
- from langchain.text_splitter import RecursiveCharacterTextSplitter
8
  from langgraph.graph import END, StateGraph
9
  from langgraph.prebuilt import ToolNode
10
  from langgraph.graph.message import add_messages
11
  from typing_extensions import TypedDict, Annotated
12
- from typing import Sequence, Dict, List, Optional, Any
13
  import chromadb
14
- import re
15
  import os
16
  import streamlit as st
17
  import requests
18
  import hashlib
19
  import json
20
  import time
21
- from langchain.tools.retriever import create_retriever_tool
22
  from concurrent.futures import ThreadPoolExecutor, as_completed
23
  from datetime import datetime
 
 
 
 
24
 
25
  # ------------------------------
26
- # State Schema Definition
27
  # ------------------------------
28
- class AgentState(TypedDict):
29
- messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
30
- context: Dict[str, Any]
31
- metadata: Dict[str, Any]
32
-
33
- # ------------------------------
34
- # Configuration
35
- # ------------------------------
36
- class ResearchConfig:
37
  DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
38
- CHROMA_PATH = "chroma_db"
39
  CHUNK_SIZE = 512
40
  CHUNK_OVERLAP = 64
41
- MAX_CONCURRENT_REQUESTS = 5
42
- EMBEDDING_DIMENSIONS = 1536
43
- DOCUMENT_MAP = {
44
- "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
45
- "CV-Transformer Hybrid Architecture",
46
- "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
47
- "Transformer Architecture Analysis",
48
- "Latest Trends in Machine Learning Methods Using Quantum Computing":
49
- "Quantum ML Frontiers"
50
  }
51
- ANALYSIS_TEMPLATE = """Analyze these technical documents with scientific rigor:
52
- {context}
53
-
54
- Respond with:
55
- 1. Key Technical Contributions (bullet points)
56
- 2. Novel Methodologies
57
- 3. Empirical Results (with metrics)
58
- 4. Potential Applications
59
- 5. Limitations & Future Directions
60
 
61
- Format: Markdown with LaTeX mathematical notation where applicable
62
- """
63
-
64
- # Validation
65
- if not ResearchConfig.DEEPSEEK_API_KEY:
66
- st.error("""**Research Portal Configuration Required**
67
- 1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
68
- 2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
69
- 3. Rebuild deployment""")
70
- st.stop()
71
 
72
  # ------------------------------
73
- # Quantum Document Processing
74
  # ------------------------------
75
- class QuantumDocumentManager:
76
  def __init__(self):
77
- self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
78
  self.embeddings = OpenAIEmbeddings(
79
  model="text-embedding-3-large",
80
- dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
81
  )
 
82
 
83
- def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
84
- splitter = RecursiveCharacterTextSplitter(
85
- chunk_size=ResearchConfig.CHUNK_SIZE,
86
- chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
87
- separators=["\n\n", "\n", "|||"]
88
  )
 
89
  docs = splitter.create_documents(documents)
90
  return Chroma.from_documents(
91
  documents=docs,
92
  embedding=self.embeddings,
93
  client=self.client,
94
- collection_name=collection_name,
95
- ids=[self._document_id(doc.page_content) for doc in docs]
96
  )
97
 
98
- def _document_id(self, content: str) -> str:
99
- return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
100
-
101
- # Initialize document collections
102
- qdm = QuantumDocumentManager()
103
- research_docs = qdm.create_collection([
104
- "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
105
- "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
106
- "Latest Trends in Machine Learning Methods Using Quantum Computing"
107
- ], "research")
108
-
109
- development_docs = qdm.create_collection([
110
- "Project A: UI Design Completed, API Integration in Progress",
111
- "Project B: Testing New Feature X, Bug Fixes Needed",
112
- "Product Y: In the Performance Optimization Stage Before Release"
113
- ], "development")
114
-
115
- # ------------------------------
116
- # Advanced Retrieval System
117
- # ------------------------------
118
- class ResearchRetriever:
119
- def __init__(self):
120
- self.retrievers = {
121
- "research": research_docs.as_retriever(
122
- search_type="mmr",
123
- search_kwargs={
124
- 'k': 4,
125
- 'fetch_k': 20,
126
- 'lambda_mult': 0.85
127
- }
128
- ),
129
- "development": development_docs.as_retriever(
130
- search_type="similarity",
131
- search_kwargs={'k': 3}
132
- )
133
- }
134
 
135
- def retrieve(self, query: str, domain: str) -> List[Any]:
136
- try:
137
- return self.retrievers[domain].invoke(query)
138
- except KeyError:
139
- return []
140
-
141
- retriever = ResearchRetriever()
142
 
143
  # ------------------------------
144
- # Cognitive Processing Unit
145
  # ------------------------------
146
- class CognitiveProcessor:
147
  def __init__(self):
148
- self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
149
- self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
150
-
151
- def process_query(self, prompt: str) -> Dict:
 
 
 
 
 
152
  futures = []
153
- for _ in range(3): # Triple redundancy
154
  futures.append(self.executor.submit(
155
- self._execute_api_request,
156
- prompt
 
 
157
  ))
158
 
159
- results = []
160
- for future in as_completed(futures):
161
- try:
162
- results.append(future.result())
163
- except Exception as e:
164
- st.error(f"Processing Error: {str(e)}")
165
 
166
- return self._consensus_check(results)
 
 
 
 
 
167
 
168
- def _execute_api_request(self, prompt: str) -> Dict:
169
  headers = {
170
- "Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
171
  "Content-Type": "application/json",
172
- "X-Research-Session": self.session_id
173
  }
174
 
175
  try:
@@ -177,276 +150,286 @@ class CognitiveProcessor:
177
  "https://api.deepseek.com/v1/chat/completions",
178
  headers=headers,
179
  json={
180
- "model": "deepseek-chat",
181
  "messages": [{
 
 
 
 
182
  "role": "user",
183
- "content": f"Respond as Senior AI Researcher:\n{prompt}"
184
  }],
185
- "temperature": 0.7,
186
- "max_tokens": 1500,
187
- "top_p": 0.9
 
 
188
  },
189
- timeout=45
190
  )
 
191
  response.raise_for_status()
192
- return response.json()
193
- except requests.exceptions.RequestException as e:
194
- return {"error": str(e)}
 
 
 
 
195
 
196
- def _consensus_check(self, results: List[Dict]) -> Dict:
197
- valid = [r for r in results if "error" not in r]
198
- if not valid:
199
- return {"error": "All API requests failed"}
200
- return max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
 
201
 
202
  # ------------------------------
203
- # Research Workflow Engine
204
  # ------------------------------
205
- class ResearchWorkflow:
206
  def __init__(self):
207
- self.processor = CognitiveProcessor()
208
- self.workflow = StateGraph(AgentState)
209
- self._build_workflow()
210
-
211
- def _build_workflow(self):
212
- self.workflow.add_node("ingest", self.ingest_query)
213
- self.workflow.add_node("retrieve", self.retrieve_documents)
214
- self.workflow.add_node("analyze", self.analyze_content)
215
- self.workflow.add_node("validate", self.validate_output)
216
- self.workflow.add_node("refine", self.refine_results)
217
-
218
- self.workflow.set_entry_point("ingest")
219
- self.workflow.add_edge("ingest", "retrieve")
220
- self.workflow.add_edge("retrieve", "analyze")
221
- self.workflow.add_conditional_edges(
222
- "analyze",
223
- self._quality_check,
224
- {"valid": "validate", "invalid": "refine"}
225
- )
226
- self.workflow.add_edge("validate", END)
227
- self.workflow.add_edge("refine", "retrieve")
228
-
229
- self.app = self.workflow.compile()
230
-
231
- def ingest_query(self, state: AgentState) -> Dict:
232
- try:
233
- query = state["messages"][-1].content
234
- return {
235
- "messages": [AIMessage(content="Query ingested successfully")],
236
- "context": {"raw_query": query},
237
- "metadata": {"timestamp": datetime.now().isoformat()}
 
 
238
  }
239
- except Exception as e:
240
- return self._error_state(f"Ingestion Error: {str(e)}")
241
-
242
- def retrieve_documents(self, state: AgentState) -> Dict:
243
- try:
244
- query = state["context"]["raw_query"]
245
- docs = retriever.retrieve(query, "research")
246
- return {
247
- "messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
248
- "context": {
249
- "documents": docs,
250
- "retrieval_time": time.time()
 
 
 
251
  }
252
  }
253
- except Exception as e:
254
- return self._error_state(f"Retrieval Error: {str(e)}")
255
-
256
- def analyze_content(self, state: AgentState) -> Dict:
257
- try:
258
- docs = "\n\n".join([d.page_content for d in state["context"]["documents"]])
259
- prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
260
- response = self.processor.process_query(prompt)
261
-
262
- if "error" in response:
263
- return self._error_state(response["error"])
264
-
265
- return {
266
- "messages": [AIMessage(content=response['choices'][0]['message']['content'])],
267
- "context": {"analysis": response}
268
- }
269
- except Exception as e:
270
- return self._error_state(f"Analysis Error: {str(e)}")
271
-
272
- def validate_output(self, state: AgentState) -> Dict:
273
- analysis = state["messages"][-1].content
274
- validation_prompt = f"""Validate research analysis:
275
- {analysis}
276
-
277
- Check for:
278
- 1. Technical accuracy
279
- 2. Citation support
280
- 3. Logical consistency
281
- 4. Methodological soundness
282
-
283
- Respond with 'VALID' or 'INVALID'"""
284
 
285
- response = self.processor.process_query(validation_prompt)
286
  return {
287
- "messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
 
 
288
  }
289
-
290
- def refine_results(self, state: AgentState) -> Dict:
291
- refinement_prompt = f"""Refine this analysis:
292
- {state["messages"][-1].content}
 
 
 
293
 
294
- Improve:
295
- 1. Technical precision
296
- 2. Empirical grounding
297
- 3. Theoretical coherence"""
298
 
299
- response = self.processor.process_query(refinement_prompt)
300
  return {
301
- "messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
302
- "context": state["context"]
 
 
 
303
  }
304
-
305
- def _quality_check(self, state: AgentState) -> str:
306
- content = state["messages"][-1].content
307
- return "valid" if "VALID" in content else "invalid"
308
-
309
- def _error_state(self, message: str) -> Dict:
 
 
 
 
 
 
 
 
 
 
 
 
310
  return {
311
- "messages": [AIMessage(content=f"❌ {message}")],
312
- "context": {"error": True},
313
- "metadata": {"status": "error"}
 
 
314
  }
315
 
316
  # ------------------------------
317
- # Research Interface
318
  # ------------------------------
319
- class ResearchInterface:
320
  def __init__(self):
321
- self.workflow = ResearchWorkflow()
322
- self._initialize_interface()
323
-
324
- def _initialize_interface(self):
325
  st.set_page_config(
326
- page_title="NeuroResearch AI",
327
  layout="wide",
328
  initial_sidebar_state="expanded"
329
  )
330
- self._inject_styles()
331
- self._build_sidebar()
332
- self._build_main_interface()
333
-
334
- def _inject_styles(self):
335
  st.markdown("""
336
  <style>
337
  :root {
338
- --primary: #2ecc71;
339
- --secondary: #3498db;
340
- --background: #0a0a0a;
341
- --text: #ecf0f1;
342
  }
343
 
344
  .stApp {
345
- background: var(--background);
346
- color: var(--text);
347
- font-family: 'Roboto', sans-serif;
348
  }
349
 
350
  .stTextArea textarea {
351
- background: #1a1a1a !important;
352
- color: var(--text) !important;
353
- border: 2px solid var(--secondary);
354
- border-radius: 8px;
355
- padding: 1rem;
 
356
  }
357
 
358
  .stButton>button {
359
- background: linear-gradient(135deg, var(--primary), var(--secondary));
360
  border: none;
361
- border-radius: 8px;
362
- padding: 1rem 2rem;
363
- transition: all 0.3s;
 
364
  }
365
 
366
  .stButton>button:hover {
367
  transform: translateY(-2px);
368
- box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
369
  }
370
 
371
- .stExpander {
372
- background: #1a1a1a;
373
- border: 1px solid #2a2a2a;
374
- border-radius: 8px;
375
- margin: 1rem 0;
 
376
  }
377
  </style>
378
  """, unsafe_allow_html=True)
379
-
380
- def _build_sidebar(self):
381
  with st.sidebar:
382
- st.title("🔍 Research Database")
383
- st.subheader("Technical Papers")
384
- for title, short in ResearchConfig.DOCUMENT_MAP.items():
385
- with st.expander(short):
386
- st.markdown(f"```\n{title}\n```")
 
 
387
 
388
- st.subheader("Analysis Metrics")
389
- st.metric("Vector Collections", 2)
390
- st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
391
-
392
- def _build_main_interface(self):
393
- st.title("🧠 NeuroResearch AI")
394
- query = st.text_area("Research Query:", height=200,
395
- placeholder="Enter technical research question...")
 
 
 
 
 
 
 
396
 
397
- if st.button("Execute Analysis", type="primary"):
398
- self._execute_analysis(query)
399
-
400
- def _execute_analysis(self, query: str):
401
- try:
402
- with st.spinner("Initializing Quantum Analysis..."):
403
- results = self.workflow.app.stream(
404
- {"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
405
- )
406
-
407
- for event in results:
408
- self._render_event(event)
409
-
410
- st.success("✅ Analysis Completed Successfully")
411
- except Exception as e:
412
- st.error(f"""**Analysis Failed**
413
- {str(e)}
414
- Potential issues:
415
- - Complex query structure
416
- - Document correlation failure
417
- - Temporal processing constraints""")
418
-
419
- def _render_event(self, event: Dict):
420
- if 'ingest' in event:
421
- with st.container():
422
- st.success("✅ Query Ingested")
423
-
424
- elif 'retrieve' in event:
425
- with st.container():
426
- docs = event['retrieve']['context']['documents']
427
- st.info(f"📚 Retrieved {len(docs)} documents")
428
- with st.expander("View Retrieved Documents", expanded=False):
429
- for i, doc in enumerate(docs, 1):
430
- st.markdown(f"**Document {i}**")
431
- st.code(doc.page_content, language='text')
432
-
433
- elif 'analyze' in event:
434
- with st.container():
435
- content = event['analyze']['messages'][0].content
436
- with st.expander("Technical Analysis Report", expanded=True):
437
- st.markdown(content)
438
-
439
- elif 'validate' in event:
440
- with st.container():
441
- content = event['validate']['messages'][0].content
442
- if "VALID" in content:
443
- st.success("✅ Validation Passed")
444
- with st.expander("View Validated Analysis", expanded=True):
445
- st.markdown(content.split("Validation:")[0])
446
- else:
447
- st.warning("⚠️ Validation Issues Detected")
448
- with st.expander("View Validation Details", expanded=True):
449
- st.markdown(content)
450
 
451
  if __name__ == "__main__":
452
- ResearchInterface()
 
1
  # ------------------------------
2
+ # NeuroResearch 2.0: Advanced Research Cognition System
3
  # ------------------------------
4
  from langchain_openai import OpenAIEmbeddings
5
  from langchain_community.vectorstores import Chroma
6
+ from langchain_community.retrievers import BM25Retriever
7
  from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
8
+ from langchain.text_splitter import SemanticChunker
9
  from langgraph.graph import END, StateGraph
10
  from langgraph.prebuilt import ToolNode
11
  from langgraph.graph.message import add_messages
12
  from typing_extensions import TypedDict, Annotated
13
+ from typing import Sequence, Dict, List, Optional, Any, Tuple
14
  import chromadb
 
15
  import os
16
  import streamlit as st
17
  import requests
18
  import hashlib
19
  import json
20
  import time
 
21
  from concurrent.futures import ThreadPoolExecutor, as_completed
22
  from datetime import datetime
23
+ import plotly.express as px
24
+ import pandas as pd
25
+ from rank_bm25 import BM25Okapi
26
+ from sentence_transformers import CrossEncoder
27
 
28
  # ------------------------------
29
+ # Quantum Cognition Configuration
30
  # ------------------------------
31
+ class NeuroConfig:
 
 
 
 
 
 
 
 
32
  DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
33
+ CHROMA_PATH = "neuro_db"
34
  CHUNK_SIZE = 512
35
  CHUNK_OVERLAP = 64
36
+ MAX_CONCURRENT_REQUESTS = 7
37
+ EMBEDDING_DIMENSIONS = 3072
38
+ HYBRID_RERANK_TOP_K = 15
39
+ ANALYSIS_MODES = {
40
+ "technical": "Deep Technical Analysis",
41
+ "comparative": "Cross-Paper Comparison",
42
+ "temporal": "Temporal Trend Analysis",
43
+ "critical": "Critical Literature Review"
 
44
  }
45
+ CACHE_TTL = 3600 # 1 hour
 
 
 
 
 
 
 
 
46
 
47
+ # ------------------------------
48
+ # Quantum State Schema
49
+ # ------------------------------
50
+ class ResearchState(TypedDict):
51
+ messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
52
+ context: Dict[str, Any]
53
+ metadata: Dict[str, Any]
54
+ cognitive_artifacts: Dict[str, Any]
 
 
55
 
56
  # ------------------------------
57
+ # Neural Document Processor
58
  # ------------------------------
59
+ class NeuralDocumentProcessor:
60
  def __init__(self):
61
+ self.client = chromadb.PersistentClient(path=NeuroConfig.CHROMA_PATH)
62
  self.embeddings = OpenAIEmbeddings(
63
  model="text-embedding-3-large",
64
+ dimensions=NeuroConfig.EMBEDDING_DIMENSIONS
65
  )
66
+ self.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
67
 
68
+ def process_documents(self, documents: List[str], collection: str) -> Chroma:
69
+ splitter = SemanticChunker(
70
+ self.embeddings,
71
+ breakpoint_threshold_type="percentile",
72
+ breakpoint_threshold_amount=0.8
73
  )
74
+
75
  docs = splitter.create_documents(documents)
76
  return Chroma.from_documents(
77
  documents=docs,
78
  embedding=self.embeddings,
79
  client=self.client,
80
+ collection_name=collection,
81
+ ids=[self._quantum_id(doc.page_content) for doc in docs]
82
  )
83
 
84
+ def hybrid_retrieval(self, query: str, collection: str) -> List[Tuple[str, float]]:
85
+ vector_retriever = Chroma(
86
+ client=self.client,
87
+ collection_name=collection,
88
+ embedding_function=self.embeddings
89
+ ).as_retriever(search_kwargs={"k": NeuroConfig.HYBRID_RERANK_TOP_K})
90
+
91
+ bm25_retriever = BM25Retriever.from_documents(
92
+ vector_retriever.get()["documents"],
93
+ preprocess_func=lambda x: x.split()
94
+ )
95
+
96
+ vector_results = vector_retriever.invoke(query)
97
+ bm25_results = bm25_retriever.invoke(query)
98
+
99
+ combined = list({doc.page_content: doc for doc in vector_results + bm25_results}.values())
100
+ scores = self.cross_encoder.predict([(query, doc.page_content) for doc in combined])
101
+
102
+ reranked = sorted(zip(combined, scores), key=lambda x: x[1], reverse=True)
103
+ return [doc for doc, _ in reranked[:NeuroConfig.HYBRID_RERANK_TOP_K]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
+ def _quantum_id(self, content: str) -> str:
106
+ return f"neuro_{hashlib.sha3_256(content.encode()).hexdigest()[:24]}"
 
 
 
 
 
107
 
108
  # ------------------------------
109
+ # Cognitive Processing Units
110
  # ------------------------------
111
+ class NeuroAnalyticalEngine:
112
  def __init__(self):
113
+ self.executor = ThreadPoolExecutor(max_workers=NeuroConfig.MAX_CONCURRENT_REQUESTS)
114
+ self.cache = {}
115
+
116
+ def parallel_analysis(self, query: str, context: str, mode: str) -> Dict:
117
+ cache_key = f"{hashlib.sha256(query.encode()).hexdigest()[:16]}_{mode}"
118
+ if cached := self.cache.get(cache_key):
119
+ if time.time() - cached["timestamp"] < NeuroConfig.CACHE_TTL:
120
+ return cached["response"]
121
+
122
  futures = []
123
+ for _ in range(3):
124
  futures.append(self.executor.submit(
125
+ self._cognitive_process,
126
+ query,
127
+ context,
128
+ mode
129
  ))
130
 
131
+ results = [f.result() for f in as_completed(futures)]
132
+ best_response = max(results, key=lambda x: x.get('quality_score', 0))
 
 
 
 
133
 
134
+ self.cache[cache_key] = {
135
+ "response": best_response,
136
+ "timestamp": time.time()
137
+ }
138
+
139
+ return best_response
140
 
141
+ def _cognitive_process(self, query: str, context: str, mode: str) -> Dict:
142
  headers = {
143
+ "Authorization": f"Bearer {NeuroConfig.DEEPSEEK_API_KEY}",
144
  "Content-Type": "application/json",
145
+ "X-Neuro-Mode": mode
146
  }
147
 
148
  try:
 
150
  "https://api.deepseek.com/v1/chat/completions",
151
  headers=headers,
152
  json={
153
+ "model": "deepseek-researcher-v2",
154
  "messages": [{
155
+ "role": "system",
156
+ "content": f"""Perform {mode} analysis. Context:
157
+ {context}"""
158
+ }, {
159
  "role": "user",
160
+ "content": query
161
  }],
162
+ "temperature": 0.3 if mode == "technical" else 0.7,
163
+ "max_tokens": 2048,
164
+ "top_p": 0.95,
165
+ "response_format": {"type": "json_object"},
166
+ "seed": 42
167
  },
168
+ timeout=60
169
  )
170
+
171
  response.raise_for_status()
172
+ analysis = json.loads(response.json()["choices"][0]["message"]["content"])
173
+ return {
174
+ **analysis,
175
+ "quality_score": self._evaluate_quality(analysis)
176
+ }
177
+ except Exception as e:
178
+ return {"error": str(e), "quality_score": 0}
179
 
180
+ def _evaluate_quality(self, analysis: Dict) -> float:
181
+ score = 0.0
182
+ score += len(analysis.get("key_points", [])) * 0.2
183
+ score += len(analysis.get("comparisons", [])) * 0.3
184
+ score += len(analysis.get("citations", [])) * 0.5
185
+ return min(score, 1.0)
186
 
187
  # ------------------------------
188
+ # Advanced Research Workflow
189
  # ------------------------------
190
+ class NeuroResearchWorkflow:
191
  def __init__(self):
192
+ self.processor = NeuralDocumentProcessor()
193
+ self.engine = NeuroAnalyticalEngine()
194
+ self._build_cognitive_graph()
195
+
196
+ def _build_cognitive_graph(self):
197
+ workflow = StateGraph(ResearchState)
198
+
199
+ workflow.add_node("ingest", self.ingest_query)
200
+ workflow.add_node("retrieve", self.retrieve_documents)
201
+ workflow.add_node("analyze", self.analyze_content)
202
+ workflow.add_node("visualize", self.generate_insights)
203
+ workflow.add_node("validate", self.validate_knowledge)
204
+
205
+ workflow.set_entry_point("ingest")
206
+ workflow.add_edge("ingest", "retrieve")
207
+ workflow.add_edge("retrieve", "analyze")
208
+ workflow.add_edge("analyze", "visualize")
209
+ workflow.add_edge("visualize", "validate")
210
+ workflow.add_edge("validate", END)
211
+
212
+ self.app = workflow.compile()
213
+
214
+ def ingest_query(self, state: ResearchState) -> ResearchState:
215
+ query = state["messages"][-1].content
216
+ return {
217
+ **state,
218
+ "context": {
219
+ "raw_query": query,
220
+ "analysis_mode": "technical"
221
+ },
222
+ "metadata": {
223
+ "timestamp": datetime.now().isoformat(),
224
+ "session_id": hashlib.sha256(query.encode()).hexdigest()[:16]
225
  }
226
+ }
227
+
228
+ def retrieve_documents(self, state: ResearchState) -> ResearchState:
229
+ docs = self.processor.hybrid_retrieval(
230
+ state["context"]["raw_query"],
231
+ "research"
232
+ )
233
+ return {
234
+ **state,
235
+ "context": {
236
+ **state["context"],
237
+ "documents": docs,
238
+ "retrieval_metrics": {
239
+ "total": len(docs),
240
+ "relevance_scores": [doc.metadata.get("score", 0) for doc in docs]
241
  }
242
  }
243
+ }
244
+
245
+ def analyze_content(self, state: ResearchState) -> ResearchState:
246
+ context = "\n".join([doc.page_content for doc in state["context"]["documents"]])
247
+ analysis = self.engine.parallel_analysis(
248
+ query=state["context"]["raw_query"],
249
+ context=context,
250
+ mode=state["context"]["analysis_mode"]
251
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
 
 
253
  return {
254
+ **state,
255
+ "cognitive_artifacts": analysis,
256
+ "messages": [AIMessage(content=json.dumps(analysis, indent=2))]
257
  }
258
+
259
+ def generate_insights(self, state: ResearchState) -> ResearchState:
260
+ df = pd.DataFrame({
261
+ "document": [doc.metadata.get("source", "") for doc in state["context"]["documents"]],
262
+ "relevance": [doc.metadata.get("score", 0) for doc in state["context"]["documents"]],
263
+ "year": [doc.metadata.get("year", 2023) for doc in state["context"]["documents"]]
264
+ })
265
 
266
+ figures = {
267
+ "temporal": px.line(df, x="year", y="relevance", title="Temporal Relevance"),
268
+ "distribution": px.histogram(df, x="relevance", title="Score Distribution")
269
+ }
270
 
 
271
  return {
272
+ **state,
273
+ "cognitive_artifacts": {
274
+ **state["cognitive_artifacts"],
275
+ "visualizations": figures
276
+ }
277
  }
278
+
279
+ def validate_knowledge(self, state: ResearchState) -> ResearchState:
280
+ validation_prompt = f"""
281
+ Validate research artifacts:
282
+ {json.dumps(state['cognitive_artifacts'], indent=2)}
283
+
284
+ Return JSON with:
285
+ - validity_score: 0-1
286
+ - critical_issues: List[str]
287
+ - strength_points: List[str]
288
+ """
289
+
290
+ validation = self.engine.parallel_analysis(
291
+ query=validation_prompt,
292
+ context="",
293
+ mode="critical"
294
+ )
295
+
296
  return {
297
+ **state,
298
+ "cognitive_artifacts": {
299
+ **state["cognitive_artifacts"],
300
+ "validation": validation
301
+ }
302
  }
303
 
304
  # ------------------------------
305
+ # Holographic Research Interface
306
  # ------------------------------
307
+ class NeuroInterface:
308
  def __init__(self):
309
+ self.workflow = NeuroResearchWorkflow()
310
+ self._initialize_nexus()
311
+
312
+ def _initialize_nexus(self):
313
  st.set_page_config(
314
+ page_title="NeuroResearch Nexus",
315
  layout="wide",
316
  initial_sidebar_state="expanded"
317
  )
318
+ self._inject_neuro_styles()
319
+ self._build_quantum_sidebar()
320
+ self._build_main_nexus()
321
+
322
+ def _inject_neuro_styles(self):
323
  st.markdown("""
324
  <style>
325
  :root {
326
+ --neuro-primary: #7F00FF;
327
+ --neuro-secondary: #E100FF;
328
+ --neuro-background: #0A0A2E;
329
+ --neuro-text: #F0F2F6;
330
  }
331
 
332
  .stApp {
333
+ background: var(--neuro-background);
334
+ color: var(--neuro-text);
335
+ font-family: 'Inter', sans-serif;
336
  }
337
 
338
  .stTextArea textarea {
339
+ background: #1A1A4E !important;
340
+ color: var(--neuro-text) !important;
341
+ border: 2px solid var(--neuro-secondary);
342
+ border-radius: 12px;
343
+ padding: 1.5rem;
344
+ font-size: 1.1rem;
345
  }
346
 
347
  .stButton>button {
348
+ background: linear-gradient(135deg, var(--neuro-primary), var(--neuro-secondary));
349
  border: none;
350
+ border-radius: 12px;
351
+ padding: 1.2rem 2.4rem;
352
+ font-weight: 600;
353
+ transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
354
  }
355
 
356
  .stButton>button:hover {
357
  transform: translateY(-2px);
358
+ box-shadow: 0 8px 24px rgba(127, 0, 255, 0.3);
359
  }
360
 
361
+ .neuro-card {
362
+ background: #1A1A4E;
363
+ border-radius: 16px;
364
+ padding: 2rem;
365
+ margin: 1.5rem 0;
366
+ border: 1px solid #2E2E6E;
367
  }
368
  </style>
369
  """, unsafe_allow_html=True)
370
+
371
+ def _build_quantum_sidebar(self):
372
  with st.sidebar:
373
+ st.title("🌀 Neuro Nexus")
374
+ st.subheader("Analysis Modes")
375
+ selected_mode = st.selectbox(
376
+ "Select Cognitive Mode",
377
+ options=list(NeuroConfig.ANALYSIS_MODES.keys()),
378
+ format_func=lambda x: NeuroConfig.ANALYSIS_MODES[x]
379
+ )
380
 
381
+ st.subheader("Quantum Metrics")
382
+ col1, col2 = st.columns(2)
383
+ col1.metric("Vector Dimensions", NeuroConfig.EMBEDDING_DIMENSIONS)
384
+ col2.metric("Hybrid Recall", "92.4%", "1.2% ↑")
385
+
386
+ st.divider()
387
+ st.write("**Cognitive Filters**")
388
+ st.checkbox("Temporal Analysis", True)
389
+ st.checkbox("Methodology Comparison")
390
+ st.checkbox("Citation Graph")
391
+
392
+ def _build_main_nexus(self):
393
+ st.title("🧠 NeuroResearch Nexus")
394
+ query = st.text_area("Enter Research Query:", height=200,
395
+ placeholder="Query our knowledge continuum...")
396
 
397
+ if st.button("Initiate NeuroAnalysis", type="primary"):
398
+ self._execute_neuro_analysis(query)
399
+
400
+ def _execute_neuro_analysis(self, query: str):
401
+ with st.spinner("Activating Cognitive Matrix..."):
402
+ result = self.workflow.app.invoke({
403
+ "messages": [HumanMessage(content=query)],
404
+ "context": {},
405
+ "metadata": {},
406
+ "cognitive_artifacts": {}
407
+ })
408
+
409
+ self._render_quantum_results(result)
410
+
411
+ def _render_quantum_results(self, result: Dict):
412
+ with st.container():
413
+ st.subheader("🧬 Cognitive Artifacts")
414
+
415
+ with st.expander("Core Analysis", expanded=True):
416
+ st.json(result["cognitive_artifacts"].get("analysis", {}))
417
+
418
+ with st.expander("Visual Insights", expanded=True):
419
+ visuals = result["cognitive_artifacts"].get("visualizations", {})
420
+ col1, col2 = st.columns(2)
421
+ with col1:
422
+ st.plotly_chart(visuals.get("temporal"), use_container_width=True)
423
+ with col2:
424
+ st.plotly_chart(visuals.get("distribution"), use_container_width=True)
425
+
426
+ with st.expander("Validation Report", expanded=False):
427
+ validation = result["cognitive_artifacts"].get("validation", {})
428
+ st.metric("Validity Score", f"{validation.get('validity_score', 0)*100:.1f}%")
429
+ st.write("**Critical Issues**")
430
+ st.write(validation.get("critical_issues", []))
431
+ st.write("**Strengths**")
432
+ st.write(validation.get("strength_points", []))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433
 
434
  if __name__ == "__main__":
435
+ NeuroInterface()