Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,175 +1,148 @@
|
|
1 |
# ------------------------------
|
2 |
-
#
|
3 |
# ------------------------------
|
4 |
from langchain_openai import OpenAIEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
|
|
6 |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
7 |
-
from langchain.text_splitter import
|
8 |
from langgraph.graph import END, StateGraph
|
9 |
from langgraph.prebuilt import ToolNode
|
10 |
from langgraph.graph.message import add_messages
|
11 |
from typing_extensions import TypedDict, Annotated
|
12 |
-
from typing import Sequence, Dict, List, Optional, Any
|
13 |
import chromadb
|
14 |
-
import re
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
18 |
import hashlib
|
19 |
import json
|
20 |
import time
|
21 |
-
from langchain.tools.retriever import create_retriever_tool
|
22 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
23 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# ------------------------------
|
26 |
-
#
|
27 |
# ------------------------------
|
28 |
-
class
|
29 |
-
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
30 |
-
context: Dict[str, Any]
|
31 |
-
metadata: Dict[str, Any]
|
32 |
-
|
33 |
-
# ------------------------------
|
34 |
-
# Configuration
|
35 |
-
# ------------------------------
|
36 |
-
class ResearchConfig:
|
37 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
38 |
-
CHROMA_PATH = "
|
39 |
CHUNK_SIZE = 512
|
40 |
CHUNK_OVERLAP = 64
|
41 |
-
MAX_CONCURRENT_REQUESTS =
|
42 |
-
EMBEDDING_DIMENSIONS =
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
"
|
47 |
-
|
48 |
-
"
|
49 |
-
"Quantum ML Frontiers"
|
50 |
}
|
51 |
-
|
52 |
-
{context}
|
53 |
-
|
54 |
-
Respond with:
|
55 |
-
1. Key Technical Contributions (bullet points)
|
56 |
-
2. Novel Methodologies
|
57 |
-
3. Empirical Results (with metrics)
|
58 |
-
4. Potential Applications
|
59 |
-
5. Limitations & Future Directions
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
3. Rebuild deployment""")
|
70 |
-
st.stop()
|
71 |
|
72 |
# ------------------------------
|
73 |
-
#
|
74 |
# ------------------------------
|
75 |
-
class
|
76 |
def __init__(self):
|
77 |
-
self.client = chromadb.PersistentClient(path=
|
78 |
self.embeddings = OpenAIEmbeddings(
|
79 |
model="text-embedding-3-large",
|
80 |
-
dimensions=
|
81 |
)
|
|
|
82 |
|
83 |
-
def
|
84 |
-
splitter =
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
)
|
|
|
89 |
docs = splitter.create_documents(documents)
|
90 |
return Chroma.from_documents(
|
91 |
documents=docs,
|
92 |
embedding=self.embeddings,
|
93 |
client=self.client,
|
94 |
-
collection_name=
|
95 |
-
ids=[self.
|
96 |
)
|
97 |
|
98 |
-
def
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
class ResearchRetriever:
|
119 |
-
def __init__(self):
|
120 |
-
self.retrievers = {
|
121 |
-
"research": research_docs.as_retriever(
|
122 |
-
search_type="mmr",
|
123 |
-
search_kwargs={
|
124 |
-
'k': 4,
|
125 |
-
'fetch_k': 20,
|
126 |
-
'lambda_mult': 0.85
|
127 |
-
}
|
128 |
-
),
|
129 |
-
"development": development_docs.as_retriever(
|
130 |
-
search_type="similarity",
|
131 |
-
search_kwargs={'k': 3}
|
132 |
-
)
|
133 |
-
}
|
134 |
|
135 |
-
def
|
136 |
-
|
137 |
-
return self.retrievers[domain].invoke(query)
|
138 |
-
except KeyError:
|
139 |
-
return []
|
140 |
-
|
141 |
-
retriever = ResearchRetriever()
|
142 |
|
143 |
# ------------------------------
|
144 |
-
# Cognitive Processing
|
145 |
# ------------------------------
|
146 |
-
class
|
147 |
def __init__(self):
|
148 |
-
self.executor = ThreadPoolExecutor(max_workers=
|
149 |
-
self.
|
150 |
-
|
151 |
-
def
|
|
|
|
|
|
|
|
|
|
|
152 |
futures = []
|
153 |
-
for _ in range(3):
|
154 |
futures.append(self.executor.submit(
|
155 |
-
self.
|
156 |
-
|
|
|
|
|
157 |
))
|
158 |
|
159 |
-
results = []
|
160 |
-
|
161 |
-
try:
|
162 |
-
results.append(future.result())
|
163 |
-
except Exception as e:
|
164 |
-
st.error(f"Processing Error: {str(e)}")
|
165 |
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
def
|
169 |
headers = {
|
170 |
-
"Authorization": f"Bearer {
|
171 |
"Content-Type": "application/json",
|
172 |
-
"X-
|
173 |
}
|
174 |
|
175 |
try:
|
@@ -177,276 +150,286 @@ class CognitiveProcessor:
|
|
177 |
"https://api.deepseek.com/v1/chat/completions",
|
178 |
headers=headers,
|
179 |
json={
|
180 |
-
"model": "deepseek-
|
181 |
"messages": [{
|
|
|
|
|
|
|
|
|
182 |
"role": "user",
|
183 |
-
"content":
|
184 |
}],
|
185 |
-
"temperature": 0.7,
|
186 |
-
"max_tokens":
|
187 |
-
"top_p": 0.
|
|
|
|
|
188 |
},
|
189 |
-
timeout=
|
190 |
)
|
|
|
191 |
response.raise_for_status()
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
def
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
201 |
|
202 |
# ------------------------------
|
203 |
-
# Research Workflow
|
204 |
# ------------------------------
|
205 |
-
class
|
206 |
def __init__(self):
|
207 |
-
self.processor =
|
208 |
-
self.
|
209 |
-
self.
|
210 |
-
|
211 |
-
def
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
)
|
226 |
-
|
227 |
-
self.workflow.
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
"
|
236 |
-
|
237 |
-
|
|
|
|
|
238 |
}
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
251 |
}
|
252 |
}
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
if "error" in response:
|
263 |
-
return self._error_state(response["error"])
|
264 |
-
|
265 |
-
return {
|
266 |
-
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
|
267 |
-
"context": {"analysis": response}
|
268 |
-
}
|
269 |
-
except Exception as e:
|
270 |
-
return self._error_state(f"Analysis Error: {str(e)}")
|
271 |
-
|
272 |
-
def validate_output(self, state: AgentState) -> Dict:
|
273 |
-
analysis = state["messages"][-1].content
|
274 |
-
validation_prompt = f"""Validate research analysis:
|
275 |
-
{analysis}
|
276 |
-
|
277 |
-
Check for:
|
278 |
-
1. Technical accuracy
|
279 |
-
2. Citation support
|
280 |
-
3. Logical consistency
|
281 |
-
4. Methodological soundness
|
282 |
-
|
283 |
-
Respond with 'VALID' or 'INVALID'"""
|
284 |
|
285 |
-
response = self.processor.process_query(validation_prompt)
|
286 |
return {
|
287 |
-
|
|
|
|
|
288 |
}
|
289 |
-
|
290 |
-
def
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
|
299 |
-
response = self.processor.process_query(refinement_prompt)
|
300 |
return {
|
301 |
-
|
302 |
-
"
|
|
|
|
|
|
|
303 |
}
|
304 |
-
|
305 |
-
def
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
return {
|
311 |
-
|
312 |
-
"
|
313 |
-
|
|
|
|
|
314 |
}
|
315 |
|
316 |
# ------------------------------
|
317 |
-
# Research Interface
|
318 |
# ------------------------------
|
319 |
-
class
|
320 |
def __init__(self):
|
321 |
-
self.workflow =
|
322 |
-
self.
|
323 |
-
|
324 |
-
def
|
325 |
st.set_page_config(
|
326 |
-
page_title="NeuroResearch
|
327 |
layout="wide",
|
328 |
initial_sidebar_state="expanded"
|
329 |
)
|
330 |
-
self.
|
331 |
-
self.
|
332 |
-
self.
|
333 |
-
|
334 |
-
def
|
335 |
st.markdown("""
|
336 |
<style>
|
337 |
:root {
|
338 |
-
--primary: #
|
339 |
-
--secondary: #
|
340 |
-
--background: #
|
341 |
-
--text: #
|
342 |
}
|
343 |
|
344 |
.stApp {
|
345 |
-
background: var(--background);
|
346 |
-
color: var(--text);
|
347 |
-
font-family: '
|
348 |
}
|
349 |
|
350 |
.stTextArea textarea {
|
351 |
-
background: #
|
352 |
-
color: var(--text) !important;
|
353 |
-
border: 2px solid var(--secondary);
|
354 |
-
border-radius:
|
355 |
-
padding:
|
|
|
356 |
}
|
357 |
|
358 |
.stButton>button {
|
359 |
-
background: linear-gradient(135deg, var(--primary), var(--secondary));
|
360 |
border: none;
|
361 |
-
border-radius:
|
362 |
-
padding:
|
363 |
-
|
|
|
364 |
}
|
365 |
|
366 |
.stButton>button:hover {
|
367 |
transform: translateY(-2px);
|
368 |
-
box-shadow: 0
|
369 |
}
|
370 |
|
371 |
-
.
|
372 |
-
background: #
|
373 |
-
border:
|
374 |
-
|
375 |
-
margin:
|
|
|
376 |
}
|
377 |
</style>
|
378 |
""", unsafe_allow_html=True)
|
379 |
-
|
380 |
-
def
|
381 |
with st.sidebar:
|
382 |
-
st.title("
|
383 |
-
st.subheader("
|
384 |
-
|
385 |
-
|
386 |
-
|
|
|
|
|
387 |
|
388 |
-
st.subheader("
|
389 |
-
st.
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
-
if st.button("
|
398 |
-
self.
|
399 |
-
|
400 |
-
def
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
elif 'analyze' in event:
|
434 |
-
with st.container():
|
435 |
-
content = event['analyze']['messages'][0].content
|
436 |
-
with st.expander("Technical Analysis Report", expanded=True):
|
437 |
-
st.markdown(content)
|
438 |
-
|
439 |
-
elif 'validate' in event:
|
440 |
-
with st.container():
|
441 |
-
content = event['validate']['messages'][0].content
|
442 |
-
if "VALID" in content:
|
443 |
-
st.success("✅ Validation Passed")
|
444 |
-
with st.expander("View Validated Analysis", expanded=True):
|
445 |
-
st.markdown(content.split("Validation:")[0])
|
446 |
-
else:
|
447 |
-
st.warning("⚠️ Validation Issues Detected")
|
448 |
-
with st.expander("View Validation Details", expanded=True):
|
449 |
-
st.markdown(content)
|
450 |
|
451 |
if __name__ == "__main__":
|
452 |
-
|
|
|
1 |
# ------------------------------
|
2 |
+
# NeuroResearch 2.0: Advanced Research Cognition System
|
3 |
# ------------------------------
|
4 |
from langchain_openai import OpenAIEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain_community.retrievers import BM25Retriever
|
7 |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
8 |
+
from langchain.text_splitter import SemanticChunker
|
9 |
from langgraph.graph import END, StateGraph
|
10 |
from langgraph.prebuilt import ToolNode
|
11 |
from langgraph.graph.message import add_messages
|
12 |
from typing_extensions import TypedDict, Annotated
|
13 |
+
from typing import Sequence, Dict, List, Optional, Any, Tuple
|
14 |
import chromadb
|
|
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
18 |
import hashlib
|
19 |
import json
|
20 |
import time
|
|
|
21 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
22 |
from datetime import datetime
|
23 |
+
import plotly.express as px
|
24 |
+
import pandas as pd
|
25 |
+
from rank_bm25 import BM25Okapi
|
26 |
+
from sentence_transformers import CrossEncoder
|
27 |
|
28 |
# ------------------------------
|
29 |
+
# Quantum Cognition Configuration
|
30 |
# ------------------------------
|
31 |
+
class NeuroConfig:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
33 |
+
CHROMA_PATH = "neuro_db"
|
34 |
CHUNK_SIZE = 512
|
35 |
CHUNK_OVERLAP = 64
|
36 |
+
MAX_CONCURRENT_REQUESTS = 7
|
37 |
+
EMBEDDING_DIMENSIONS = 3072
|
38 |
+
HYBRID_RERANK_TOP_K = 15
|
39 |
+
ANALYSIS_MODES = {
|
40 |
+
"technical": "Deep Technical Analysis",
|
41 |
+
"comparative": "Cross-Paper Comparison",
|
42 |
+
"temporal": "Temporal Trend Analysis",
|
43 |
+
"critical": "Critical Literature Review"
|
|
|
44 |
}
|
45 |
+
CACHE_TTL = 3600 # 1 hour
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# ------------------------------
|
48 |
+
# Quantum State Schema
|
49 |
+
# ------------------------------
|
50 |
+
class ResearchState(TypedDict):
|
51 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
52 |
+
context: Dict[str, Any]
|
53 |
+
metadata: Dict[str, Any]
|
54 |
+
cognitive_artifacts: Dict[str, Any]
|
|
|
|
|
55 |
|
56 |
# ------------------------------
|
57 |
+
# Neural Document Processor
|
58 |
# ------------------------------
|
59 |
+
class NeuralDocumentProcessor:
|
60 |
def __init__(self):
|
61 |
+
self.client = chromadb.PersistentClient(path=NeuroConfig.CHROMA_PATH)
|
62 |
self.embeddings = OpenAIEmbeddings(
|
63 |
model="text-embedding-3-large",
|
64 |
+
dimensions=NeuroConfig.EMBEDDING_DIMENSIONS
|
65 |
)
|
66 |
+
self.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
67 |
|
68 |
+
def process_documents(self, documents: List[str], collection: str) -> Chroma:
|
69 |
+
splitter = SemanticChunker(
|
70 |
+
self.embeddings,
|
71 |
+
breakpoint_threshold_type="percentile",
|
72 |
+
breakpoint_threshold_amount=0.8
|
73 |
)
|
74 |
+
|
75 |
docs = splitter.create_documents(documents)
|
76 |
return Chroma.from_documents(
|
77 |
documents=docs,
|
78 |
embedding=self.embeddings,
|
79 |
client=self.client,
|
80 |
+
collection_name=collection,
|
81 |
+
ids=[self._quantum_id(doc.page_content) for doc in docs]
|
82 |
)
|
83 |
|
84 |
+
def hybrid_retrieval(self, query: str, collection: str) -> List[Tuple[str, float]]:
|
85 |
+
vector_retriever = Chroma(
|
86 |
+
client=self.client,
|
87 |
+
collection_name=collection,
|
88 |
+
embedding_function=self.embeddings
|
89 |
+
).as_retriever(search_kwargs={"k": NeuroConfig.HYBRID_RERANK_TOP_K})
|
90 |
+
|
91 |
+
bm25_retriever = BM25Retriever.from_documents(
|
92 |
+
vector_retriever.get()["documents"],
|
93 |
+
preprocess_func=lambda x: x.split()
|
94 |
+
)
|
95 |
+
|
96 |
+
vector_results = vector_retriever.invoke(query)
|
97 |
+
bm25_results = bm25_retriever.invoke(query)
|
98 |
+
|
99 |
+
combined = list({doc.page_content: doc for doc in vector_results + bm25_results}.values())
|
100 |
+
scores = self.cross_encoder.predict([(query, doc.page_content) for doc in combined])
|
101 |
+
|
102 |
+
reranked = sorted(zip(combined, scores), key=lambda x: x[1], reverse=True)
|
103 |
+
return [doc for doc, _ in reranked[:NeuroConfig.HYBRID_RERANK_TOP_K]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
def _quantum_id(self, content: str) -> str:
|
106 |
+
return f"neuro_{hashlib.sha3_256(content.encode()).hexdigest()[:24]}"
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# ------------------------------
|
109 |
+
# Cognitive Processing Units
|
110 |
# ------------------------------
|
111 |
+
class NeuroAnalyticalEngine:
|
112 |
def __init__(self):
|
113 |
+
self.executor = ThreadPoolExecutor(max_workers=NeuroConfig.MAX_CONCURRENT_REQUESTS)
|
114 |
+
self.cache = {}
|
115 |
+
|
116 |
+
def parallel_analysis(self, query: str, context: str, mode: str) -> Dict:
|
117 |
+
cache_key = f"{hashlib.sha256(query.encode()).hexdigest()[:16]}_{mode}"
|
118 |
+
if cached := self.cache.get(cache_key):
|
119 |
+
if time.time() - cached["timestamp"] < NeuroConfig.CACHE_TTL:
|
120 |
+
return cached["response"]
|
121 |
+
|
122 |
futures = []
|
123 |
+
for _ in range(3):
|
124 |
futures.append(self.executor.submit(
|
125 |
+
self._cognitive_process,
|
126 |
+
query,
|
127 |
+
context,
|
128 |
+
mode
|
129 |
))
|
130 |
|
131 |
+
results = [f.result() for f in as_completed(futures)]
|
132 |
+
best_response = max(results, key=lambda x: x.get('quality_score', 0))
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
self.cache[cache_key] = {
|
135 |
+
"response": best_response,
|
136 |
+
"timestamp": time.time()
|
137 |
+
}
|
138 |
+
|
139 |
+
return best_response
|
140 |
|
141 |
+
def _cognitive_process(self, query: str, context: str, mode: str) -> Dict:
|
142 |
headers = {
|
143 |
+
"Authorization": f"Bearer {NeuroConfig.DEEPSEEK_API_KEY}",
|
144 |
"Content-Type": "application/json",
|
145 |
+
"X-Neuro-Mode": mode
|
146 |
}
|
147 |
|
148 |
try:
|
|
|
150 |
"https://api.deepseek.com/v1/chat/completions",
|
151 |
headers=headers,
|
152 |
json={
|
153 |
+
"model": "deepseek-researcher-v2",
|
154 |
"messages": [{
|
155 |
+
"role": "system",
|
156 |
+
"content": f"""Perform {mode} analysis. Context:
|
157 |
+
{context}"""
|
158 |
+
}, {
|
159 |
"role": "user",
|
160 |
+
"content": query
|
161 |
}],
|
162 |
+
"temperature": 0.3 if mode == "technical" else 0.7,
|
163 |
+
"max_tokens": 2048,
|
164 |
+
"top_p": 0.95,
|
165 |
+
"response_format": {"type": "json_object"},
|
166 |
+
"seed": 42
|
167 |
},
|
168 |
+
timeout=60
|
169 |
)
|
170 |
+
|
171 |
response.raise_for_status()
|
172 |
+
analysis = json.loads(response.json()["choices"][0]["message"]["content"])
|
173 |
+
return {
|
174 |
+
**analysis,
|
175 |
+
"quality_score": self._evaluate_quality(analysis)
|
176 |
+
}
|
177 |
+
except Exception as e:
|
178 |
+
return {"error": str(e), "quality_score": 0}
|
179 |
|
180 |
+
def _evaluate_quality(self, analysis: Dict) -> float:
|
181 |
+
score = 0.0
|
182 |
+
score += len(analysis.get("key_points", [])) * 0.2
|
183 |
+
score += len(analysis.get("comparisons", [])) * 0.3
|
184 |
+
score += len(analysis.get("citations", [])) * 0.5
|
185 |
+
return min(score, 1.0)
|
186 |
|
187 |
# ------------------------------
|
188 |
+
# Advanced Research Workflow
|
189 |
# ------------------------------
|
190 |
+
class NeuroResearchWorkflow:
|
191 |
def __init__(self):
|
192 |
+
self.processor = NeuralDocumentProcessor()
|
193 |
+
self.engine = NeuroAnalyticalEngine()
|
194 |
+
self._build_cognitive_graph()
|
195 |
+
|
196 |
+
def _build_cognitive_graph(self):
|
197 |
+
workflow = StateGraph(ResearchState)
|
198 |
+
|
199 |
+
workflow.add_node("ingest", self.ingest_query)
|
200 |
+
workflow.add_node("retrieve", self.retrieve_documents)
|
201 |
+
workflow.add_node("analyze", self.analyze_content)
|
202 |
+
workflow.add_node("visualize", self.generate_insights)
|
203 |
+
workflow.add_node("validate", self.validate_knowledge)
|
204 |
+
|
205 |
+
workflow.set_entry_point("ingest")
|
206 |
+
workflow.add_edge("ingest", "retrieve")
|
207 |
+
workflow.add_edge("retrieve", "analyze")
|
208 |
+
workflow.add_edge("analyze", "visualize")
|
209 |
+
workflow.add_edge("visualize", "validate")
|
210 |
+
workflow.add_edge("validate", END)
|
211 |
+
|
212 |
+
self.app = workflow.compile()
|
213 |
+
|
214 |
+
def ingest_query(self, state: ResearchState) -> ResearchState:
|
215 |
+
query = state["messages"][-1].content
|
216 |
+
return {
|
217 |
+
**state,
|
218 |
+
"context": {
|
219 |
+
"raw_query": query,
|
220 |
+
"analysis_mode": "technical"
|
221 |
+
},
|
222 |
+
"metadata": {
|
223 |
+
"timestamp": datetime.now().isoformat(),
|
224 |
+
"session_id": hashlib.sha256(query.encode()).hexdigest()[:16]
|
225 |
}
|
226 |
+
}
|
227 |
+
|
228 |
+
def retrieve_documents(self, state: ResearchState) -> ResearchState:
|
229 |
+
docs = self.processor.hybrid_retrieval(
|
230 |
+
state["context"]["raw_query"],
|
231 |
+
"research"
|
232 |
+
)
|
233 |
+
return {
|
234 |
+
**state,
|
235 |
+
"context": {
|
236 |
+
**state["context"],
|
237 |
+
"documents": docs,
|
238 |
+
"retrieval_metrics": {
|
239 |
+
"total": len(docs),
|
240 |
+
"relevance_scores": [doc.metadata.get("score", 0) for doc in docs]
|
241 |
}
|
242 |
}
|
243 |
+
}
|
244 |
+
|
245 |
+
def analyze_content(self, state: ResearchState) -> ResearchState:
|
246 |
+
context = "\n".join([doc.page_content for doc in state["context"]["documents"]])
|
247 |
+
analysis = self.engine.parallel_analysis(
|
248 |
+
query=state["context"]["raw_query"],
|
249 |
+
context=context,
|
250 |
+
mode=state["context"]["analysis_mode"]
|
251 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
|
|
253 |
return {
|
254 |
+
**state,
|
255 |
+
"cognitive_artifacts": analysis,
|
256 |
+
"messages": [AIMessage(content=json.dumps(analysis, indent=2))]
|
257 |
}
|
258 |
+
|
259 |
+
def generate_insights(self, state: ResearchState) -> ResearchState:
|
260 |
+
df = pd.DataFrame({
|
261 |
+
"document": [doc.metadata.get("source", "") for doc in state["context"]["documents"]],
|
262 |
+
"relevance": [doc.metadata.get("score", 0) for doc in state["context"]["documents"]],
|
263 |
+
"year": [doc.metadata.get("year", 2023) for doc in state["context"]["documents"]]
|
264 |
+
})
|
265 |
|
266 |
+
figures = {
|
267 |
+
"temporal": px.line(df, x="year", y="relevance", title="Temporal Relevance"),
|
268 |
+
"distribution": px.histogram(df, x="relevance", title="Score Distribution")
|
269 |
+
}
|
270 |
|
|
|
271 |
return {
|
272 |
+
**state,
|
273 |
+
"cognitive_artifacts": {
|
274 |
+
**state["cognitive_artifacts"],
|
275 |
+
"visualizations": figures
|
276 |
+
}
|
277 |
}
|
278 |
+
|
279 |
+
def validate_knowledge(self, state: ResearchState) -> ResearchState:
|
280 |
+
validation_prompt = f"""
|
281 |
+
Validate research artifacts:
|
282 |
+
{json.dumps(state['cognitive_artifacts'], indent=2)}
|
283 |
+
|
284 |
+
Return JSON with:
|
285 |
+
- validity_score: 0-1
|
286 |
+
- critical_issues: List[str]
|
287 |
+
- strength_points: List[str]
|
288 |
+
"""
|
289 |
+
|
290 |
+
validation = self.engine.parallel_analysis(
|
291 |
+
query=validation_prompt,
|
292 |
+
context="",
|
293 |
+
mode="critical"
|
294 |
+
)
|
295 |
+
|
296 |
return {
|
297 |
+
**state,
|
298 |
+
"cognitive_artifacts": {
|
299 |
+
**state["cognitive_artifacts"],
|
300 |
+
"validation": validation
|
301 |
+
}
|
302 |
}
|
303 |
|
304 |
# ------------------------------
|
305 |
+
# Holographic Research Interface
|
306 |
# ------------------------------
|
307 |
+
class NeuroInterface:
|
308 |
def __init__(self):
|
309 |
+
self.workflow = NeuroResearchWorkflow()
|
310 |
+
self._initialize_nexus()
|
311 |
+
|
312 |
+
def _initialize_nexus(self):
|
313 |
st.set_page_config(
|
314 |
+
page_title="NeuroResearch Nexus",
|
315 |
layout="wide",
|
316 |
initial_sidebar_state="expanded"
|
317 |
)
|
318 |
+
self._inject_neuro_styles()
|
319 |
+
self._build_quantum_sidebar()
|
320 |
+
self._build_main_nexus()
|
321 |
+
|
322 |
+
def _inject_neuro_styles(self):
|
323 |
st.markdown("""
|
324 |
<style>
|
325 |
:root {
|
326 |
+
--neuro-primary: #7F00FF;
|
327 |
+
--neuro-secondary: #E100FF;
|
328 |
+
--neuro-background: #0A0A2E;
|
329 |
+
--neuro-text: #F0F2F6;
|
330 |
}
|
331 |
|
332 |
.stApp {
|
333 |
+
background: var(--neuro-background);
|
334 |
+
color: var(--neuro-text);
|
335 |
+
font-family: 'Inter', sans-serif;
|
336 |
}
|
337 |
|
338 |
.stTextArea textarea {
|
339 |
+
background: #1A1A4E !important;
|
340 |
+
color: var(--neuro-text) !important;
|
341 |
+
border: 2px solid var(--neuro-secondary);
|
342 |
+
border-radius: 12px;
|
343 |
+
padding: 1.5rem;
|
344 |
+
font-size: 1.1rem;
|
345 |
}
|
346 |
|
347 |
.stButton>button {
|
348 |
+
background: linear-gradient(135deg, var(--neuro-primary), var(--neuro-secondary));
|
349 |
border: none;
|
350 |
+
border-radius: 12px;
|
351 |
+
padding: 1.2rem 2.4rem;
|
352 |
+
font-weight: 600;
|
353 |
+
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
|
354 |
}
|
355 |
|
356 |
.stButton>button:hover {
|
357 |
transform: translateY(-2px);
|
358 |
+
box-shadow: 0 8px 24px rgba(127, 0, 255, 0.3);
|
359 |
}
|
360 |
|
361 |
+
.neuro-card {
|
362 |
+
background: #1A1A4E;
|
363 |
+
border-radius: 16px;
|
364 |
+
padding: 2rem;
|
365 |
+
margin: 1.5rem 0;
|
366 |
+
border: 1px solid #2E2E6E;
|
367 |
}
|
368 |
</style>
|
369 |
""", unsafe_allow_html=True)
|
370 |
+
|
371 |
+
def _build_quantum_sidebar(self):
|
372 |
with st.sidebar:
|
373 |
+
st.title("🌀 Neuro Nexus")
|
374 |
+
st.subheader("Analysis Modes")
|
375 |
+
selected_mode = st.selectbox(
|
376 |
+
"Select Cognitive Mode",
|
377 |
+
options=list(NeuroConfig.ANALYSIS_MODES.keys()),
|
378 |
+
format_func=lambda x: NeuroConfig.ANALYSIS_MODES[x]
|
379 |
+
)
|
380 |
|
381 |
+
st.subheader("Quantum Metrics")
|
382 |
+
col1, col2 = st.columns(2)
|
383 |
+
col1.metric("Vector Dimensions", NeuroConfig.EMBEDDING_DIMENSIONS)
|
384 |
+
col2.metric("Hybrid Recall", "92.4%", "1.2% ↑")
|
385 |
+
|
386 |
+
st.divider()
|
387 |
+
st.write("**Cognitive Filters**")
|
388 |
+
st.checkbox("Temporal Analysis", True)
|
389 |
+
st.checkbox("Methodology Comparison")
|
390 |
+
st.checkbox("Citation Graph")
|
391 |
+
|
392 |
+
def _build_main_nexus(self):
|
393 |
+
st.title("🧠 NeuroResearch Nexus")
|
394 |
+
query = st.text_area("Enter Research Query:", height=200,
|
395 |
+
placeholder="Query our knowledge continuum...")
|
396 |
|
397 |
+
if st.button("Initiate NeuroAnalysis", type="primary"):
|
398 |
+
self._execute_neuro_analysis(query)
|
399 |
+
|
400 |
+
def _execute_neuro_analysis(self, query: str):
|
401 |
+
with st.spinner("Activating Cognitive Matrix..."):
|
402 |
+
result = self.workflow.app.invoke({
|
403 |
+
"messages": [HumanMessage(content=query)],
|
404 |
+
"context": {},
|
405 |
+
"metadata": {},
|
406 |
+
"cognitive_artifacts": {}
|
407 |
+
})
|
408 |
+
|
409 |
+
self._render_quantum_results(result)
|
410 |
+
|
411 |
+
def _render_quantum_results(self, result: Dict):
|
412 |
+
with st.container():
|
413 |
+
st.subheader("🧬 Cognitive Artifacts")
|
414 |
+
|
415 |
+
with st.expander("Core Analysis", expanded=True):
|
416 |
+
st.json(result["cognitive_artifacts"].get("analysis", {}))
|
417 |
+
|
418 |
+
with st.expander("Visual Insights", expanded=True):
|
419 |
+
visuals = result["cognitive_artifacts"].get("visualizations", {})
|
420 |
+
col1, col2 = st.columns(2)
|
421 |
+
with col1:
|
422 |
+
st.plotly_chart(visuals.get("temporal"), use_container_width=True)
|
423 |
+
with col2:
|
424 |
+
st.plotly_chart(visuals.get("distribution"), use_container_width=True)
|
425 |
+
|
426 |
+
with st.expander("Validation Report", expanded=False):
|
427 |
+
validation = result["cognitive_artifacts"].get("validation", {})
|
428 |
+
st.metric("Validity Score", f"{validation.get('validity_score', 0)*100:.1f}%")
|
429 |
+
st.write("**Critical Issues**")
|
430 |
+
st.write(validation.get("critical_issues", []))
|
431 |
+
st.write("**Strengths**")
|
432 |
+
st.write(validation.get("strength_points", []))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
if __name__ == "__main__":
|
435 |
+
NeuroInterface()
|