mgbam commited on
Commit
dd92890
Β·
verified Β·
1 Parent(s): bd23f77

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +411 -247
app.py CHANGED
@@ -1,298 +1,462 @@
1
- """
2
- AI Research Assistant
3
- """
4
-
5
  # ------------------------------
6
- # Core Imports & Configuration
7
  # ------------------------------
8
- import os
9
- import re
10
- import time
11
- import chromadb
12
- import requests
13
- import streamlit as st
14
- from typing import Sequence, Tuple
15
- from typing_extensions import TypedDict, Annotated
16
- from langchain_core.messages import HumanMessage, AIMessage
17
- from langchain.text_splitter import RecursiveCharacterTextSplitter
18
  from langchain_community.vectorstores import Chroma
19
- from langchain.tools.retriever import create_retriever_tool
 
20
  from langgraph.graph import END, StateGraph
21
  from langgraph.prebuilt import ToolNode
22
  from langgraph.graph.message import add_messages
23
- from chromadb.config import Settings
24
- from langchain_openai import OpenAIEmbeddings
 
 
 
 
 
 
25
 
26
  # ------------------------------
27
- # Type Definitions
28
  # ------------------------------
29
- class AgentState(TypedDict):
30
- messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  # ------------------------------
33
- # Configuration & Constants
34
  # ------------------------------
35
- class Config:
36
- API_KEY = os.environ.get("DEEPSEEK_API_KEY")
37
- CHROMA_PATH = "chroma_db"
38
- TEXT_SPLITTER_CONFIG = {
39
- "chunk_size": 512,
40
- "chunk_overlap": 128,
41
- "separators": ["\n\n", "\n", ". ", "! ", "? "]
42
- }
43
 
44
  # ------------------------------
45
- # Core System Components
46
  # ------------------------------
47
- class ResearchAssistant:
48
- def __init__(self):
49
- self.embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
50
- self.vector_stores = self._init_vector_stores()
51
- self.tools = self._create_tools()
52
- self.workflow = self._build_workflow()
53
-
54
- def _init_vector_stores(self) -> Tuple[Chroma, Chroma]:
55
- """Initialize vector stores with proper document processing"""
56
- splitter = RecursiveCharacterTextSplitter(**Config.TEXT_SPLITTER_CONFIG)
57
-
58
- research_docs = splitter.create_documents([
59
- "Research Report: New AI Model Achieves 98% Image Recognition Accuracy",
60
- "Transformers: The New NLP Architecture Standard",
61
- "Quantum Machine Learning: Emerging Trends and Applications"
62
- ])
63
-
64
- development_docs = splitter.create_documents([
65
- "Project A: UI Design Finalized, API Integration Phase",
66
- "Project B: Feature Testing and Bug Fixes",
67
- "Product Y: Performance Optimization Pre-Release"
68
- ])
69
-
70
- client = chromadb.PersistentClient(
71
- path=Config.CHROMA_PATH,
72
- settings=Settings(anonymized_telemetry=False)
73
-
74
- return (
75
- Chroma.from_documents(research_docs, self.embeddings,
76
- client=client, collection_name="research"),
77
- Chroma.from_documents(development_docs, self.embeddings,
78
- client=client, collection_name="development")
79
- )
80
 
81
- def _create_tools(self):
82
- """Create retrieval tools with optimized search parameters"""
83
- research_retriever = self.vector_stores[0].as_retriever(
84
- search_kwargs={"k": 3, "score_threshold": 0.7}
85
- )
86
- development_retriever = self.vector_stores[1].as_retriever(
87
- search_kwargs={"k": 3, "score_threshold": 0.7}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  )
 
89
 
90
- return [
91
- create_retriever_tool(
92
- research_retriever,
93
- "research_db",
94
- "Access technical research papers and reports"
95
- ),
96
- create_retriever_tool(
97
- development_retriever,
98
- "development_db",
99
- "Retrieve project development status updates"
100
- )
101
- ]
102
-
103
- def _build_workflow(self):
104
- """Construct and return the processing workflow"""
105
- workflow = StateGraph(AgentState)
106
-
107
- workflow.add_node("analyze", self.analyze_query)
108
- workflow.add_node("retrieve", ToolNode(self.tools))
109
- workflow.add_node("synthesize", self.synthesize_response)
110
 
111
- workflow.set_entry_point("analyze")
112
-
113
- workflow.add_conditional_edges(
114
- "analyze",
115
- self._needs_retrieval,
116
- {"retrieve": "retrieve", "direct": "synthesize"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  )
 
118
 
119
- workflow.add_edge("retrieve", "synthesize")
120
- workflow.add_edge("synthesize", END)
121
-
122
- return workflow.compile()
123
-
124
- def _needs_retrieval(self, state: AgentState) -> str:
125
- """Determine if document retrieval is needed"""
126
- query = state["messages"][-1].content.lower()
127
- return "retrieve" if any(kw in query for kw in {
128
- "research", "study", "project", "develop", "trend"
129
- }) else "direct"
130
-
131
- def analyze_query(self, state: AgentState):
132
- """Analyze user query and determine next steps"""
133
- try:
134
- user_input = state["messages"][-1].content
135
-
136
- headers = {
137
- "Authorization": f"Bearer {Config.API_KEY}",
138
- "Content-Type": "application/json"
139
- }
140
-
141
- response = requests.post(
142
- "https://api.deepseek.com/v1/chat/completions",
143
- headers=headers,
144
- json={
145
- "model": "deepseek-chat",
146
- "messages": [{
147
- "role": "user",
148
- "content": f"""Analyze this query and format as:
149
- CATEGORY: [RESEARCH|DEVELOPMENT|GENERAL]
150
- KEY_TERMS: comma-separated list
151
- {user_input}"""
152
- }],
153
- "temperature": 0.3
154
- },
155
- timeout=15
156
- )
157
-
158
- response.raise_for_status()
159
- analysis = response.json()["choices"][0]["message"]["content"]
160
-
161
- return {"messages": [AIMessage(content=analysis)]}
162
-
163
- except Exception as e:
164
- return {"messages": [AIMessage(
165
- content=f"Analysis Error: {str(e)}. Please rephrase your question."
166
- )]}
167
-
168
- def synthesize_response(self, state: AgentState):
169
- """Generate final response with citations"""
170
- try:
171
- context = "\n".join([msg.content for msg in state["messages"]])
172
-
173
- headers = {
174
- "Authorization": f"Bearer {Config.API_KEY}",
175
- "Content-Type": "application/json"
176
- }
177
-
178
- response = requests.post(
179
- "https://api.deepseek.com/v1/chat/completions",
180
- headers=headers,
181
- json={
182
- "model": "deepseek-chat",
183
- "messages": [{
184
- "role": "user",
185
- "content": f"""Synthesize this information:
186
- {context}
187
-
188
- Include:
189
- 1. Key findings
190
- 2. Supporting evidence
191
- 3. Technical details
192
- 4. Potential applications"""
193
- }],
194
- "temperature": 0.5
195
- },
196
- timeout=20
197
- )
198
-
199
- response.raise_for_status()
200
- return {"messages": [AIMessage(
201
- content=response.json()["choices"][0]["message"]["content"]
202
- )]}
203
 
204
- except Exception as e:
205
- return {"messages": [AIMessage(
206
- content=f"Synthesis Error: {str(e)}. Please try again later."
207
- )]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
 
209
  # ------------------------------
210
- # Professional UI Interface
 
 
 
 
 
 
 
 
 
 
211
  # ------------------------------
212
  def main():
213
  st.set_page_config(
214
- page_title="Research Assistant Pro",
215
  layout="wide",
216
  initial_sidebar_state="expanded"
217
  )
218
-
219
- # Dark theme implementation
220
  st.markdown("""
221
  <style>
222
  .stApp {
223
- background-color: #0f1114;
224
  color: #ffffff;
225
  }
226
- .stTextInput input, .stTextArea textarea {
227
- background-color: #1e1e24 !important;
 
228
  color: #ffffff !important;
229
  }
230
- .stButton>button {
231
- background: #2563eb;
232
- transition: all 0.2s;
 
 
233
  }
234
- .stButton>button:hover {
235
- background: #1d4ed8;
 
236
  transform: scale(1.02);
237
  }
238
- .result-card {
239
- background: #1a1a1f;
240
- border-radius: 8px;
241
- padding: 1.5rem;
242
- margin: 1rem 0;
243
  }
244
- </style>
245
- """, unsafe_allow_html=True)
246
 
247
- st.title("πŸ” Research Assistant Pro")
248
- st.write("Advanced AI-Powered Research Analysis")
 
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250
  col1, col2 = st.columns([1, 2])
251
-
252
  with col1:
253
- with st.form("query_form"):
254
- query = st.text_area("Research Query:", height=150,
255
- placeholder="Enter your research question...")
256
- submitted = st.form_submit_button("Analyze")
257
-
258
- if submitted and query:
259
- with st.spinner("Processing..."):
260
- try:
261
- assistant = ResearchAssistant()
262
- result = assistant.workflow.invoke({"messages": [
263
- HumanMessage(content=query)
264
- ]})
265
 
266
- with st.expander("Analysis Details", expanded=True):
267
- st.markdown(f"""
268
- <div class="result-card">
269
- {result['messages'][-1].content}
270
- </div>
271
- """, unsafe_allow_html=True)
272
- except Exception as e:
273
- st.error(f"Processing Error: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274
 
275
  with col2:
276
- st.subheader("Knowledge Base")
277
- with st.expander("Research Documents"):
278
- st.info("""
279
- - Advanced Image Recognition Systems
280
- - Transformer Architecture Analysis
281
- - Quantum ML Research
282
- """)
283
-
284
- with st.expander("Development Updates"):
285
- st.info("""
286
- - Project A: API Integration Phase
287
- - Project B: Feature Testing
288
- - Product Y: Optimization Stage
289
- """)
290
 
291
- if __name__ == "__main__":
292
- if not Config.API_KEY:
293
- st.error("""
294
- πŸ”‘ Configuration Required:
295
- Set DEEPSEEK_API_KEY environment variable
296
  """)
297
- st.stop()
 
298
  main()
 
 
 
 
 
1
  # ------------------------------
2
+ # Imports & Dependencies
3
  # ------------------------------
4
+ from langchain_openai import OpenAIEmbeddings
 
 
 
 
 
 
 
 
 
5
  from langchain_community.vectorstores import Chroma
6
+ from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
7
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
8
  from langgraph.graph import END, StateGraph
9
  from langgraph.prebuilt import ToolNode
10
  from langgraph.graph.message import add_messages
11
+ from typing_extensions import TypedDict, Annotated
12
+ from typing import Sequence
13
+ import chromadb
14
+ import re
15
+ import os
16
+ import streamlit as st
17
+ import requests
18
+ from langchain.tools.retriever import create_retriever_tool
19
 
20
  # ------------------------------
21
+ # Configuration
22
  # ------------------------------
23
+ # Get DeepSeek API key from Hugging Face Space secrets
24
+ DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
25
+
26
+ if not DEEPSEEK_API_KEY:
27
+ st.error("""
28
+ **Missing API Configuration**
29
+ Please configure your DeepSeek API key in Hugging Face Space secrets:
30
+ 1. Go to your Space's Settings
31
+ 2. Click on 'Repository secrets'
32
+ 3. Add a secret named DEEPSEEK_API_KEY
33
+ """)
34
+ st.stop()
35
+
36
+ # Create directory for Chroma persistence
37
+ os.makedirs("chroma_db", exist_ok=True)
38
 
39
  # ------------------------------
40
+ # ChromaDB Client Configuration
41
  # ------------------------------
42
+ chroma_client = chromadb.PersistentClient(path="chroma_db")
 
 
 
 
 
 
 
43
 
44
  # ------------------------------
45
+ # Dummy Data: Research & Development Texts
46
  # ------------------------------
47
+ research_texts = [
48
+ "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
49
+ "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
50
+ "Latest Trends in Machine Learning Methods Using Quantum Computing"
51
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ development_texts = [
54
+ "Project A: UI Design Completed, API Integration in Progress",
55
+ "Project B: Testing New Feature X, Bug Fixes Needed",
56
+ "Product Y: In the Performance Optimization Stage Before Release"
57
+ ]
58
+
59
+ # ------------------------------
60
+ # Text Splitting & Document Creation
61
+ # ------------------------------
62
+ splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
63
+ research_docs = splitter.create_documents(research_texts)
64
+ development_docs = splitter.create_documents(development_texts)
65
+
66
+ # ------------------------------
67
+ # Creating Vector Stores with Embeddings
68
+ # ------------------------------
69
+ embeddings = OpenAIEmbeddings(
70
+ model="text-embedding-3-large",
71
+ # dimensions=1024 # Uncomment if needed
72
+ )
73
+
74
+ research_vectorstore = Chroma.from_documents(
75
+ documents=research_docs,
76
+ embedding=embeddings,
77
+ client=chroma_client,
78
+ collection_name="research_collection"
79
+ )
80
+
81
+ development_vectorstore = Chroma.from_documents(
82
+ documents=development_docs,
83
+ embedding=embeddings,
84
+ client=chroma_client,
85
+ collection_name="development_collection"
86
+ )
87
+
88
+ research_retriever = research_vectorstore.as_retriever()
89
+ development_retriever = development_vectorstore.as_retriever()
90
+
91
+ # ------------------------------
92
+ # Creating Retriever Tools
93
+ # ------------------------------
94
+ research_tool = create_retriever_tool(
95
+ research_retriever,
96
+ "research_db_tool",
97
+ "Search information from the research database."
98
+ )
99
+
100
+ development_tool = create_retriever_tool(
101
+ development_retriever,
102
+ "development_db_tool",
103
+ "Search information from the development database."
104
+ )
105
+
106
+ tools = [research_tool, development_tool]
107
+
108
+ # ------------------------------
109
+ # Agent Function & Workflow Functions
110
+ # ------------------------------
111
+ class AgentState(TypedDict):
112
+ messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
113
+
114
+ def agent(state: AgentState):
115
+ print("---CALL AGENT---")
116
+ messages = state["messages"]
117
+
118
+ if isinstance(messages[0], tuple):
119
+ user_message = messages[0][1]
120
+ else:
121
+ user_message = messages[0].content
122
+
123
+ prompt = f"""Given this user question: "{user_message}"
124
+ If it's about research or academic topics, respond EXACTLY in this format:
125
+ SEARCH_RESEARCH: <search terms>
126
+
127
+ If it's about development status, respond EXACTLY in this format:
128
+ SEARCH_DEV: <search terms>
129
+
130
+ Otherwise, just answer directly.
131
+ """
132
+
133
+ headers = {
134
+ "Accept": "application/json",
135
+ "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
136
+ "Content-Type": "application/json"
137
+ }
138
+
139
+ data = {
140
+ "model": "deepseek-chat",
141
+ "messages": [{"role": "user", "content": prompt}],
142
+ "temperature": 0.7,
143
+ "max_tokens": 1024
144
+ }
145
+
146
+ try:
147
+ response = requests.post(
148
+ "https://api.deepseek.com/v1/chat/completions",
149
+ headers=headers,
150
+ json=data,
151
+ verify=False,
152
+ timeout=30
153
  )
154
+ response.raise_for_status()
155
 
156
+ response_text = response.json()['choices'][0]['message']['content']
157
+ print("Raw response:", response_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
 
159
+ if "SEARCH_RESEARCH:" in response_text:
160
+ query = response_text.split("SEARCH_RESEARCH:")[1].strip()
161
+ results = research_retriever.invoke(query)
162
+ return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
163
+
164
+ elif "SEARCH_DEV:" in response_text:
165
+ query = response_text.split("SEARCH_DEV:")[1].strip()
166
+ results = development_retriever.invoke(query)
167
+ return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
168
+
169
+ else:
170
+ return {"messages": [AIMessage(content=response_text)]}
171
+
172
+ except Exception as e:
173
+ error_msg = f"API Error: {str(e)}"
174
+ if "Insufficient Balance" in str(e):
175
+ error_msg += "\n\nPlease check your DeepSeek API account balance."
176
+ return {"messages": [AIMessage(content=error_msg)]}
177
+
178
+ def simple_grade_documents(state: AgentState):
179
+ messages = state["messages"]
180
+ last_message = messages[-1]
181
+ print("Evaluating message:", last_message.content)
182
+
183
+ if "Results: [Document" in last_message.content:
184
+ print("---DOCS FOUND, GO TO GENERATE---")
185
+ return "generate"
186
+ else:
187
+ print("---NO DOCS FOUND, TRY REWRITE---")
188
+ return "rewrite"
189
+
190
+ def generate(state: AgentState):
191
+ print("---GENERATE FINAL ANSWER---")
192
+ messages = state["messages"]
193
+ question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
194
+ last_message = messages[-1]
195
+
196
+ docs = ""
197
+ if "Results: [" in last_message.content:
198
+ results_start = last_message.content.find("Results: [")
199
+ docs = last_message.content[results_start:]
200
+ print("Documents found:", docs)
201
+
202
+ headers = {
203
+ "Accept": "application/json",
204
+ "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
205
+ "Content-Type": "application/json"
206
+ }
207
+
208
+ prompt = f"""Based on these research documents, summarize the latest advancements in AI:
209
+ Question: {question}
210
+ Documents: {docs}
211
+ Focus on extracting and synthesizing the key findings from the research papers.
212
+ """
213
+
214
+ data = {
215
+ "model": "deepseek-chat",
216
+ "messages": [{
217
+ "role": "user",
218
+ "content": prompt
219
+ }],
220
+ "temperature": 0.7,
221
+ "max_tokens": 1024
222
+ }
223
+
224
+ try:
225
+ print("Sending generate request to API...")
226
+ response = requests.post(
227
+ "https://api.deepseek.com/v1/chat/completions",
228
+ headers=headers,
229
+ json=data,
230
+ verify=False,
231
+ timeout=30
232
  )
233
+ response.raise_for_status()
234
 
235
+ response_text = response.json()['choices'][0]['message']['content']
236
+ print("Final Answer:", response_text)
237
+ return {"messages": [AIMessage(content=response_text)]}
238
+ except Exception as e:
239
+ error_msg = f"Generation Error: {str(e)}"
240
+ return {"messages": [AIMessage(content=error_msg)]}
241
+
242
+ def rewrite(state: AgentState):
243
+ print("---REWRITE QUESTION---")
244
+ messages = state["messages"]
245
+ original_question = messages[0].content if len(messages) > 0 else "N/A"
246
+
247
+ headers = {
248
+ "Accept": "application/json",
249
+ "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
250
+ "Content-Type": "application/json"
251
+ }
252
+
253
+ data = {
254
+ "model": "deepseek-chat",
255
+ "messages": [{
256
+ "role": "user",
257
+ "content": f"Rewrite this question to be more specific and clearer: {original_question}"
258
+ }],
259
+ "temperature": 0.7,
260
+ "max_tokens": 1024
261
+ }
262
+
263
+ try:
264
+ print("Sending rewrite request...")
265
+ response = requests.post(
266
+ "https://api.deepseek.com/v1/chat/completions",
267
+ headers=headers,
268
+ json=data,
269
+ verify=False,
270
+ timeout=30
271
+ )
272
+ response.raise_for_status()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273
 
274
+ response_text = response.json()['choices'][0]['message']['content']
275
+ print("Rewritten question:", response_text)
276
+ return {"messages": [AIMessage(content=response_text)]}
277
+ except Exception as e:
278
+ error_msg = f"Rewrite Error: {str(e)}"
279
+ return {"messages": [AIMessage(content=error_msg)]}
280
+
281
+ tools_pattern = re.compile(r"Action: .*")
282
+
283
+ def custom_tools_condition(state: AgentState):
284
+ messages = state["messages"]
285
+ last_message = messages[-1]
286
+ content = last_message.content
287
+
288
+ print("Checking tools condition:", content)
289
+ if tools_pattern.match(content):
290
+ print("Moving to retrieve...")
291
+ return "tools"
292
+ print("Moving to END...")
293
+ return END
294
+
295
+ # ------------------------------
296
+ # Workflow Configuration using LangGraph
297
+ # ------------------------------
298
+ workflow = StateGraph(AgentState)
299
+
300
+ # Add nodes
301
+ workflow.add_node("agent", agent)
302
+ retrieve_node = ToolNode(tools)
303
+ workflow.add_node("retrieve", retrieve_node)
304
+ workflow.add_node("rewrite", rewrite)
305
+ workflow.add_node("generate", generate)
306
+
307
+ # Set entry point
308
+ workflow.set_entry_point("agent")
309
+
310
+ # Define transitions
311
+ workflow.add_conditional_edges(
312
+ "agent",
313
+ custom_tools_condition,
314
+ {
315
+ "tools": "retrieve",
316
+ END: END
317
+ }
318
+ )
319
+
320
+ workflow.add_conditional_edges(
321
+ "retrieve",
322
+ simple_grade_documents,
323
+ {
324
+ "generate": "generate",
325
+ "rewrite": "rewrite"
326
+ }
327
+ )
328
+
329
+ workflow.add_edge("generate", END)
330
+ workflow.add_edge("rewrite", "agent")
331
+
332
+ # Compile the workflow
333
+ app = workflow.compile()
334
 
335
  # ------------------------------
336
+ # Processing Function
337
+ # ------------------------------
338
+ def process_question(user_question, app, config):
339
+ """Process user question through the workflow"""
340
+ events = []
341
+ for event in app.stream({"messages": [("user", user_question)]}, config):
342
+ events.append(event)
343
+ return events
344
+
345
+ # ------------------------------
346
+ # Streamlit App UI (Dark Theme)
347
  # ------------------------------
348
  def main():
349
  st.set_page_config(
350
+ page_title="AI Research & Development Assistant",
351
  layout="wide",
352
  initial_sidebar_state="expanded"
353
  )
354
+
 
355
  st.markdown("""
356
  <style>
357
  .stApp {
358
+ background-color: #1a1a1a;
359
  color: #ffffff;
360
  }
361
+
362
+ .stTextArea textarea {
363
+ background-color: #2d2d2d !important;
364
  color: #ffffff !important;
365
  }
366
+
367
+ .stButton > button {
368
+ background-color: #4CAF50;
369
+ color: white;
370
+ transition: all 0.3s;
371
  }
372
+
373
+ .stButton > button:hover {
374
+ background-color: #45a049;
375
  transform: scale(1.02);
376
  }
377
+
378
+ .data-box {
379
+ background-color: #2d2d2d;
380
+ border-left: 5px solid #2196F3;
 
381
  }
 
 
382
 
383
+ .dev-box {
384
+ border-left: 5px solid #4CAF50;
385
+ }
386
 
387
+ .st-expander {
388
+ background-color: #2d2d2d;
389
+ border: 1px solid #3d3d3d;
390
+ }
391
+ </style>
392
+ """, unsafe_allow_html=True)
393
+
394
+ with st.sidebar:
395
+ st.header("πŸ“š Available Data")
396
+ st.subheader("Research Database")
397
+ for text in research_texts:
398
+ st.markdown(f'<div class="data-box research-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
399
+
400
+ st.subheader("Development Database")
401
+ for text in development_texts:
402
+ st.markdown(f'<div class="data-box dev-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
403
+
404
+ st.title("πŸ€– AI Research & Development Assistant")
405
+ st.markdown("---")
406
+
407
+ query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
408
+
409
  col1, col2 = st.columns([1, 2])
 
410
  with col1:
411
+ if st.button("πŸ” Get Answer", use_container_width=True):
412
+ if query:
413
+ try:
414
+ with st.spinner('Processing your question...'):
415
+ events = process_question(query, app, {"configurable": {"thread_id": "1"}})
 
 
 
 
 
 
 
416
 
417
+ for event in events:
418
+ if 'agent' in event:
419
+ with st.expander("πŸ”„ Processing Step", expanded=True):
420
+ content = event['agent']['messages'][0].content
421
+ if "Error" in content:
422
+ st.error(content)
423
+ elif "Results:" in content:
424
+ st.markdown("### πŸ“‘ Retrieved Documents:")
425
+ docs_start = content.find("Results:")
426
+ docs = content[docs_start:]
427
+ st.info(docs)
428
+ elif 'generate' in event:
429
+ content = event['generate']['messages'][0].content
430
+ if "Error" in content:
431
+ st.error(content)
432
+ else:
433
+ st.markdown("### ✨ Final Answer:")
434
+ st.success(content)
435
+ except Exception as e:
436
+ st.error(f"""
437
+ **Processing Error**
438
+ {str(e)}
439
+ Please check:
440
+ - API key configuration
441
+ - Account balance
442
+ - Network connection
443
+ """)
444
+ else:
445
+ st.warning("⚠️ Please enter a question first!")
446
 
447
  with col2:
448
+ st.markdown("""
449
+ ### 🎯 How to Use
450
+ 1. Enter your question in the text box
451
+ 2. Click the search button
452
+ 3. Review processing steps
453
+ 4. See final answer
 
 
 
 
 
 
 
 
454
 
455
+ ### πŸ’‘ Example Questions
456
+ - What's new in AI image recognition?
457
+ - How is Project B progressing?
458
+ - Recent machine learning trends?
 
459
  """)
460
+
461
+ if __name__ == "__main__":
462
  main()