Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,298 +1,462 @@
|
|
1 |
-
"""
|
2 |
-
AI Research Assistant
|
3 |
-
"""
|
4 |
-
|
5 |
# ------------------------------
|
6 |
-
#
|
7 |
# ------------------------------
|
8 |
-
import
|
9 |
-
import re
|
10 |
-
import time
|
11 |
-
import chromadb
|
12 |
-
import requests
|
13 |
-
import streamlit as st
|
14 |
-
from typing import Sequence, Tuple
|
15 |
-
from typing_extensions import TypedDict, Annotated
|
16 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
17 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
18 |
from langchain_community.vectorstores import Chroma
|
19 |
-
from
|
|
|
20 |
from langgraph.graph import END, StateGraph
|
21 |
from langgraph.prebuilt import ToolNode
|
22 |
from langgraph.graph.message import add_messages
|
23 |
-
from
|
24 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# ------------------------------
|
27 |
-
#
|
28 |
# ------------------------------
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# ------------------------------
|
33 |
-
#
|
34 |
# ------------------------------
|
35 |
-
|
36 |
-
API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
37 |
-
CHROMA_PATH = "chroma_db"
|
38 |
-
TEXT_SPLITTER_CONFIG = {
|
39 |
-
"chunk_size": 512,
|
40 |
-
"chunk_overlap": 128,
|
41 |
-
"separators": ["\n\n", "\n", ". ", "! ", "? "]
|
42 |
-
}
|
43 |
|
44 |
# ------------------------------
|
45 |
-
#
|
46 |
# ------------------------------
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
self.workflow = self._build_workflow()
|
53 |
-
|
54 |
-
def _init_vector_stores(self) -> Tuple[Chroma, Chroma]:
|
55 |
-
"""Initialize vector stores with proper document processing"""
|
56 |
-
splitter = RecursiveCharacterTextSplitter(**Config.TEXT_SPLITTER_CONFIG)
|
57 |
-
|
58 |
-
research_docs = splitter.create_documents([
|
59 |
-
"Research Report: New AI Model Achieves 98% Image Recognition Accuracy",
|
60 |
-
"Transformers: The New NLP Architecture Standard",
|
61 |
-
"Quantum Machine Learning: Emerging Trends and Applications"
|
62 |
-
])
|
63 |
-
|
64 |
-
development_docs = splitter.create_documents([
|
65 |
-
"Project A: UI Design Finalized, API Integration Phase",
|
66 |
-
"Project B: Feature Testing and Bug Fixes",
|
67 |
-
"Product Y: Performance Optimization Pre-Release"
|
68 |
-
])
|
69 |
-
|
70 |
-
client = chromadb.PersistentClient(
|
71 |
-
path=Config.CHROMA_PATH,
|
72 |
-
settings=Settings(anonymized_telemetry=False)
|
73 |
-
|
74 |
-
return (
|
75 |
-
Chroma.from_documents(research_docs, self.embeddings,
|
76 |
-
client=client, collection_name="research"),
|
77 |
-
Chroma.from_documents(development_docs, self.embeddings,
|
78 |
-
client=client, collection_name="development")
|
79 |
-
)
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
research_retriever,
|
93 |
-
"research_db",
|
94 |
-
"Access technical research papers and reports"
|
95 |
-
),
|
96 |
-
create_retriever_tool(
|
97 |
-
development_retriever,
|
98 |
-
"development_db",
|
99 |
-
"Retrieve project development status updates"
|
100 |
-
)
|
101 |
-
]
|
102 |
-
|
103 |
-
def _build_workflow(self):
|
104 |
-
"""Construct and return the processing workflow"""
|
105 |
-
workflow = StateGraph(AgentState)
|
106 |
-
|
107 |
-
workflow.add_node("analyze", self.analyze_query)
|
108 |
-
workflow.add_node("retrieve", ToolNode(self.tools))
|
109 |
-
workflow.add_node("synthesize", self.synthesize_response)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
"
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
)
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
""
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
response.raise_for_status()
|
159 |
-
analysis = response.json()["choices"][0]["message"]["content"]
|
160 |
-
|
161 |
-
return {"messages": [AIMessage(content=analysis)]}
|
162 |
-
|
163 |
-
except Exception as e:
|
164 |
-
return {"messages": [AIMessage(
|
165 |
-
content=f"Analysis Error: {str(e)}. Please rephrase your question."
|
166 |
-
)]}
|
167 |
-
|
168 |
-
def synthesize_response(self, state: AgentState):
|
169 |
-
"""Generate final response with citations"""
|
170 |
-
try:
|
171 |
-
context = "\n".join([msg.content for msg in state["messages"]])
|
172 |
-
|
173 |
-
headers = {
|
174 |
-
"Authorization": f"Bearer {Config.API_KEY}",
|
175 |
-
"Content-Type": "application/json"
|
176 |
-
}
|
177 |
-
|
178 |
-
response = requests.post(
|
179 |
-
"https://api.deepseek.com/v1/chat/completions",
|
180 |
-
headers=headers,
|
181 |
-
json={
|
182 |
-
"model": "deepseek-chat",
|
183 |
-
"messages": [{
|
184 |
-
"role": "user",
|
185 |
-
"content": f"""Synthesize this information:
|
186 |
-
{context}
|
187 |
-
|
188 |
-
Include:
|
189 |
-
1. Key findings
|
190 |
-
2. Supporting evidence
|
191 |
-
3. Technical details
|
192 |
-
4. Potential applications"""
|
193 |
-
}],
|
194 |
-
"temperature": 0.5
|
195 |
-
},
|
196 |
-
timeout=20
|
197 |
-
)
|
198 |
-
|
199 |
-
response.raise_for_status()
|
200 |
-
return {"messages": [AIMessage(
|
201 |
-
content=response.json()["choices"][0]["message"]["content"]
|
202 |
-
)]}
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
# ------------------------------
|
210 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
# ------------------------------
|
212 |
def main():
|
213 |
st.set_page_config(
|
214 |
-
page_title="Research Assistant
|
215 |
layout="wide",
|
216 |
initial_sidebar_state="expanded"
|
217 |
)
|
218 |
-
|
219 |
-
# Dark theme implementation
|
220 |
st.markdown("""
|
221 |
<style>
|
222 |
.stApp {
|
223 |
-
background-color: #
|
224 |
color: #ffffff;
|
225 |
}
|
226 |
-
|
227 |
-
|
|
|
228 |
color: #ffffff !important;
|
229 |
}
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
233 |
}
|
234 |
-
|
235 |
-
|
|
|
236 |
transform: scale(1.02);
|
237 |
}
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
margin: 1rem 0;
|
243 |
}
|
244 |
-
</style>
|
245 |
-
""", unsafe_allow_html=True)
|
246 |
|
247 |
-
|
248 |
-
|
|
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
col1, col2 = st.columns([1, 2])
|
251 |
-
|
252 |
with col1:
|
253 |
-
|
254 |
-
query
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
if submitted and query:
|
259 |
-
with st.spinner("Processing..."):
|
260 |
-
try:
|
261 |
-
assistant = ResearchAssistant()
|
262 |
-
result = assistant.workflow.invoke({"messages": [
|
263 |
-
HumanMessage(content=query)
|
264 |
-
]})
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
with col2:
|
276 |
-
st.
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
""")
|
283 |
-
|
284 |
-
with st.expander("Development Updates"):
|
285 |
-
st.info("""
|
286 |
-
- Project A: API Integration Phase
|
287 |
-
- Project B: Feature Testing
|
288 |
-
- Product Y: Optimization Stage
|
289 |
-
""")
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
Set DEEPSEEK_API_KEY environment variable
|
296 |
""")
|
297 |
-
|
|
|
298 |
main()
|
|
|
|
|
|
|
|
|
|
|
1 |
# ------------------------------
|
2 |
+
# Imports & Dependencies
|
3 |
# ------------------------------
|
4 |
+
from langchain_openai import OpenAIEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
from langgraph.graph import END, StateGraph
|
9 |
from langgraph.prebuilt import ToolNode
|
10 |
from langgraph.graph.message import add_messages
|
11 |
+
from typing_extensions import TypedDict, Annotated
|
12 |
+
from typing import Sequence
|
13 |
+
import chromadb
|
14 |
+
import re
|
15 |
+
import os
|
16 |
+
import streamlit as st
|
17 |
+
import requests
|
18 |
+
from langchain.tools.retriever import create_retriever_tool
|
19 |
|
20 |
# ------------------------------
|
21 |
+
# Configuration
|
22 |
# ------------------------------
|
23 |
+
# Get DeepSeek API key from Hugging Face Space secrets
|
24 |
+
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
25 |
+
|
26 |
+
if not DEEPSEEK_API_KEY:
|
27 |
+
st.error("""
|
28 |
+
**Missing API Configuration**
|
29 |
+
Please configure your DeepSeek API key in Hugging Face Space secrets:
|
30 |
+
1. Go to your Space's Settings
|
31 |
+
2. Click on 'Repository secrets'
|
32 |
+
3. Add a secret named DEEPSEEK_API_KEY
|
33 |
+
""")
|
34 |
+
st.stop()
|
35 |
+
|
36 |
+
# Create directory for Chroma persistence
|
37 |
+
os.makedirs("chroma_db", exist_ok=True)
|
38 |
|
39 |
# ------------------------------
|
40 |
+
# ChromaDB Client Configuration
|
41 |
# ------------------------------
|
42 |
+
chroma_client = chromadb.PersistentClient(path="chroma_db")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# ------------------------------
|
45 |
+
# Dummy Data: Research & Development Texts
|
46 |
# ------------------------------
|
47 |
+
research_texts = [
|
48 |
+
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
49 |
+
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
50 |
+
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
51 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
development_texts = [
|
54 |
+
"Project A: UI Design Completed, API Integration in Progress",
|
55 |
+
"Project B: Testing New Feature X, Bug Fixes Needed",
|
56 |
+
"Product Y: In the Performance Optimization Stage Before Release"
|
57 |
+
]
|
58 |
+
|
59 |
+
# ------------------------------
|
60 |
+
# Text Splitting & Document Creation
|
61 |
+
# ------------------------------
|
62 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
63 |
+
research_docs = splitter.create_documents(research_texts)
|
64 |
+
development_docs = splitter.create_documents(development_texts)
|
65 |
+
|
66 |
+
# ------------------------------
|
67 |
+
# Creating Vector Stores with Embeddings
|
68 |
+
# ------------------------------
|
69 |
+
embeddings = OpenAIEmbeddings(
|
70 |
+
model="text-embedding-3-large",
|
71 |
+
# dimensions=1024 # Uncomment if needed
|
72 |
+
)
|
73 |
+
|
74 |
+
research_vectorstore = Chroma.from_documents(
|
75 |
+
documents=research_docs,
|
76 |
+
embedding=embeddings,
|
77 |
+
client=chroma_client,
|
78 |
+
collection_name="research_collection"
|
79 |
+
)
|
80 |
+
|
81 |
+
development_vectorstore = Chroma.from_documents(
|
82 |
+
documents=development_docs,
|
83 |
+
embedding=embeddings,
|
84 |
+
client=chroma_client,
|
85 |
+
collection_name="development_collection"
|
86 |
+
)
|
87 |
+
|
88 |
+
research_retriever = research_vectorstore.as_retriever()
|
89 |
+
development_retriever = development_vectorstore.as_retriever()
|
90 |
+
|
91 |
+
# ------------------------------
|
92 |
+
# Creating Retriever Tools
|
93 |
+
# ------------------------------
|
94 |
+
research_tool = create_retriever_tool(
|
95 |
+
research_retriever,
|
96 |
+
"research_db_tool",
|
97 |
+
"Search information from the research database."
|
98 |
+
)
|
99 |
+
|
100 |
+
development_tool = create_retriever_tool(
|
101 |
+
development_retriever,
|
102 |
+
"development_db_tool",
|
103 |
+
"Search information from the development database."
|
104 |
+
)
|
105 |
+
|
106 |
+
tools = [research_tool, development_tool]
|
107 |
+
|
108 |
+
# ------------------------------
|
109 |
+
# Agent Function & Workflow Functions
|
110 |
+
# ------------------------------
|
111 |
+
class AgentState(TypedDict):
|
112 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
113 |
+
|
114 |
+
def agent(state: AgentState):
|
115 |
+
print("---CALL AGENT---")
|
116 |
+
messages = state["messages"]
|
117 |
+
|
118 |
+
if isinstance(messages[0], tuple):
|
119 |
+
user_message = messages[0][1]
|
120 |
+
else:
|
121 |
+
user_message = messages[0].content
|
122 |
+
|
123 |
+
prompt = f"""Given this user question: "{user_message}"
|
124 |
+
If it's about research or academic topics, respond EXACTLY in this format:
|
125 |
+
SEARCH_RESEARCH: <search terms>
|
126 |
+
|
127 |
+
If it's about development status, respond EXACTLY in this format:
|
128 |
+
SEARCH_DEV: <search terms>
|
129 |
+
|
130 |
+
Otherwise, just answer directly.
|
131 |
+
"""
|
132 |
+
|
133 |
+
headers = {
|
134 |
+
"Accept": "application/json",
|
135 |
+
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
136 |
+
"Content-Type": "application/json"
|
137 |
+
}
|
138 |
+
|
139 |
+
data = {
|
140 |
+
"model": "deepseek-chat",
|
141 |
+
"messages": [{"role": "user", "content": prompt}],
|
142 |
+
"temperature": 0.7,
|
143 |
+
"max_tokens": 1024
|
144 |
+
}
|
145 |
+
|
146 |
+
try:
|
147 |
+
response = requests.post(
|
148 |
+
"https://api.deepseek.com/v1/chat/completions",
|
149 |
+
headers=headers,
|
150 |
+
json=data,
|
151 |
+
verify=False,
|
152 |
+
timeout=30
|
153 |
)
|
154 |
+
response.raise_for_status()
|
155 |
|
156 |
+
response_text = response.json()['choices'][0]['message']['content']
|
157 |
+
print("Raw response:", response_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
if "SEARCH_RESEARCH:" in response_text:
|
160 |
+
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
161 |
+
results = research_retriever.invoke(query)
|
162 |
+
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
163 |
+
|
164 |
+
elif "SEARCH_DEV:" in response_text:
|
165 |
+
query = response_text.split("SEARCH_DEV:")[1].strip()
|
166 |
+
results = development_retriever.invoke(query)
|
167 |
+
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
168 |
+
|
169 |
+
else:
|
170 |
+
return {"messages": [AIMessage(content=response_text)]}
|
171 |
+
|
172 |
+
except Exception as e:
|
173 |
+
error_msg = f"API Error: {str(e)}"
|
174 |
+
if "Insufficient Balance" in str(e):
|
175 |
+
error_msg += "\n\nPlease check your DeepSeek API account balance."
|
176 |
+
return {"messages": [AIMessage(content=error_msg)]}
|
177 |
+
|
178 |
+
def simple_grade_documents(state: AgentState):
|
179 |
+
messages = state["messages"]
|
180 |
+
last_message = messages[-1]
|
181 |
+
print("Evaluating message:", last_message.content)
|
182 |
+
|
183 |
+
if "Results: [Document" in last_message.content:
|
184 |
+
print("---DOCS FOUND, GO TO GENERATE---")
|
185 |
+
return "generate"
|
186 |
+
else:
|
187 |
+
print("---NO DOCS FOUND, TRY REWRITE---")
|
188 |
+
return "rewrite"
|
189 |
+
|
190 |
+
def generate(state: AgentState):
|
191 |
+
print("---GENERATE FINAL ANSWER---")
|
192 |
+
messages = state["messages"]
|
193 |
+
question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
|
194 |
+
last_message = messages[-1]
|
195 |
+
|
196 |
+
docs = ""
|
197 |
+
if "Results: [" in last_message.content:
|
198 |
+
results_start = last_message.content.find("Results: [")
|
199 |
+
docs = last_message.content[results_start:]
|
200 |
+
print("Documents found:", docs)
|
201 |
+
|
202 |
+
headers = {
|
203 |
+
"Accept": "application/json",
|
204 |
+
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
205 |
+
"Content-Type": "application/json"
|
206 |
+
}
|
207 |
+
|
208 |
+
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
|
209 |
+
Question: {question}
|
210 |
+
Documents: {docs}
|
211 |
+
Focus on extracting and synthesizing the key findings from the research papers.
|
212 |
+
"""
|
213 |
+
|
214 |
+
data = {
|
215 |
+
"model": "deepseek-chat",
|
216 |
+
"messages": [{
|
217 |
+
"role": "user",
|
218 |
+
"content": prompt
|
219 |
+
}],
|
220 |
+
"temperature": 0.7,
|
221 |
+
"max_tokens": 1024
|
222 |
+
}
|
223 |
+
|
224 |
+
try:
|
225 |
+
print("Sending generate request to API...")
|
226 |
+
response = requests.post(
|
227 |
+
"https://api.deepseek.com/v1/chat/completions",
|
228 |
+
headers=headers,
|
229 |
+
json=data,
|
230 |
+
verify=False,
|
231 |
+
timeout=30
|
232 |
)
|
233 |
+
response.raise_for_status()
|
234 |
|
235 |
+
response_text = response.json()['choices'][0]['message']['content']
|
236 |
+
print("Final Answer:", response_text)
|
237 |
+
return {"messages": [AIMessage(content=response_text)]}
|
238 |
+
except Exception as e:
|
239 |
+
error_msg = f"Generation Error: {str(e)}"
|
240 |
+
return {"messages": [AIMessage(content=error_msg)]}
|
241 |
+
|
242 |
+
def rewrite(state: AgentState):
|
243 |
+
print("---REWRITE QUESTION---")
|
244 |
+
messages = state["messages"]
|
245 |
+
original_question = messages[0].content if len(messages) > 0 else "N/A"
|
246 |
+
|
247 |
+
headers = {
|
248 |
+
"Accept": "application/json",
|
249 |
+
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
250 |
+
"Content-Type": "application/json"
|
251 |
+
}
|
252 |
+
|
253 |
+
data = {
|
254 |
+
"model": "deepseek-chat",
|
255 |
+
"messages": [{
|
256 |
+
"role": "user",
|
257 |
+
"content": f"Rewrite this question to be more specific and clearer: {original_question}"
|
258 |
+
}],
|
259 |
+
"temperature": 0.7,
|
260 |
+
"max_tokens": 1024
|
261 |
+
}
|
262 |
+
|
263 |
+
try:
|
264 |
+
print("Sending rewrite request...")
|
265 |
+
response = requests.post(
|
266 |
+
"https://api.deepseek.com/v1/chat/completions",
|
267 |
+
headers=headers,
|
268 |
+
json=data,
|
269 |
+
verify=False,
|
270 |
+
timeout=30
|
271 |
+
)
|
272 |
+
response.raise_for_status()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
response_text = response.json()['choices'][0]['message']['content']
|
275 |
+
print("Rewritten question:", response_text)
|
276 |
+
return {"messages": [AIMessage(content=response_text)]}
|
277 |
+
except Exception as e:
|
278 |
+
error_msg = f"Rewrite Error: {str(e)}"
|
279 |
+
return {"messages": [AIMessage(content=error_msg)]}
|
280 |
+
|
281 |
+
tools_pattern = re.compile(r"Action: .*")
|
282 |
+
|
283 |
+
def custom_tools_condition(state: AgentState):
|
284 |
+
messages = state["messages"]
|
285 |
+
last_message = messages[-1]
|
286 |
+
content = last_message.content
|
287 |
+
|
288 |
+
print("Checking tools condition:", content)
|
289 |
+
if tools_pattern.match(content):
|
290 |
+
print("Moving to retrieve...")
|
291 |
+
return "tools"
|
292 |
+
print("Moving to END...")
|
293 |
+
return END
|
294 |
+
|
295 |
+
# ------------------------------
|
296 |
+
# Workflow Configuration using LangGraph
|
297 |
+
# ------------------------------
|
298 |
+
workflow = StateGraph(AgentState)
|
299 |
+
|
300 |
+
# Add nodes
|
301 |
+
workflow.add_node("agent", agent)
|
302 |
+
retrieve_node = ToolNode(tools)
|
303 |
+
workflow.add_node("retrieve", retrieve_node)
|
304 |
+
workflow.add_node("rewrite", rewrite)
|
305 |
+
workflow.add_node("generate", generate)
|
306 |
+
|
307 |
+
# Set entry point
|
308 |
+
workflow.set_entry_point("agent")
|
309 |
+
|
310 |
+
# Define transitions
|
311 |
+
workflow.add_conditional_edges(
|
312 |
+
"agent",
|
313 |
+
custom_tools_condition,
|
314 |
+
{
|
315 |
+
"tools": "retrieve",
|
316 |
+
END: END
|
317 |
+
}
|
318 |
+
)
|
319 |
+
|
320 |
+
workflow.add_conditional_edges(
|
321 |
+
"retrieve",
|
322 |
+
simple_grade_documents,
|
323 |
+
{
|
324 |
+
"generate": "generate",
|
325 |
+
"rewrite": "rewrite"
|
326 |
+
}
|
327 |
+
)
|
328 |
+
|
329 |
+
workflow.add_edge("generate", END)
|
330 |
+
workflow.add_edge("rewrite", "agent")
|
331 |
+
|
332 |
+
# Compile the workflow
|
333 |
+
app = workflow.compile()
|
334 |
|
335 |
# ------------------------------
|
336 |
+
# Processing Function
|
337 |
+
# ------------------------------
|
338 |
+
def process_question(user_question, app, config):
|
339 |
+
"""Process user question through the workflow"""
|
340 |
+
events = []
|
341 |
+
for event in app.stream({"messages": [("user", user_question)]}, config):
|
342 |
+
events.append(event)
|
343 |
+
return events
|
344 |
+
|
345 |
+
# ------------------------------
|
346 |
+
# Streamlit App UI (Dark Theme)
|
347 |
# ------------------------------
|
348 |
def main():
|
349 |
st.set_page_config(
|
350 |
+
page_title="AI Research & Development Assistant",
|
351 |
layout="wide",
|
352 |
initial_sidebar_state="expanded"
|
353 |
)
|
354 |
+
|
|
|
355 |
st.markdown("""
|
356 |
<style>
|
357 |
.stApp {
|
358 |
+
background-color: #1a1a1a;
|
359 |
color: #ffffff;
|
360 |
}
|
361 |
+
|
362 |
+
.stTextArea textarea {
|
363 |
+
background-color: #2d2d2d !important;
|
364 |
color: #ffffff !important;
|
365 |
}
|
366 |
+
|
367 |
+
.stButton > button {
|
368 |
+
background-color: #4CAF50;
|
369 |
+
color: white;
|
370 |
+
transition: all 0.3s;
|
371 |
}
|
372 |
+
|
373 |
+
.stButton > button:hover {
|
374 |
+
background-color: #45a049;
|
375 |
transform: scale(1.02);
|
376 |
}
|
377 |
+
|
378 |
+
.data-box {
|
379 |
+
background-color: #2d2d2d;
|
380 |
+
border-left: 5px solid #2196F3;
|
|
|
381 |
}
|
|
|
|
|
382 |
|
383 |
+
.dev-box {
|
384 |
+
border-left: 5px solid #4CAF50;
|
385 |
+
}
|
386 |
|
387 |
+
.st-expander {
|
388 |
+
background-color: #2d2d2d;
|
389 |
+
border: 1px solid #3d3d3d;
|
390 |
+
}
|
391 |
+
</style>
|
392 |
+
""", unsafe_allow_html=True)
|
393 |
+
|
394 |
+
with st.sidebar:
|
395 |
+
st.header("π Available Data")
|
396 |
+
st.subheader("Research Database")
|
397 |
+
for text in research_texts:
|
398 |
+
st.markdown(f'<div class="data-box research-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
|
399 |
+
|
400 |
+
st.subheader("Development Database")
|
401 |
+
for text in development_texts:
|
402 |
+
st.markdown(f'<div class="data-box dev-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
|
403 |
+
|
404 |
+
st.title("π€ AI Research & Development Assistant")
|
405 |
+
st.markdown("---")
|
406 |
+
|
407 |
+
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
|
408 |
+
|
409 |
col1, col2 = st.columns([1, 2])
|
|
|
410 |
with col1:
|
411 |
+
if st.button("π Get Answer", use_container_width=True):
|
412 |
+
if query:
|
413 |
+
try:
|
414 |
+
with st.spinner('Processing your question...'):
|
415 |
+
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
+
for event in events:
|
418 |
+
if 'agent' in event:
|
419 |
+
with st.expander("π Processing Step", expanded=True):
|
420 |
+
content = event['agent']['messages'][0].content
|
421 |
+
if "Error" in content:
|
422 |
+
st.error(content)
|
423 |
+
elif "Results:" in content:
|
424 |
+
st.markdown("### π Retrieved Documents:")
|
425 |
+
docs_start = content.find("Results:")
|
426 |
+
docs = content[docs_start:]
|
427 |
+
st.info(docs)
|
428 |
+
elif 'generate' in event:
|
429 |
+
content = event['generate']['messages'][0].content
|
430 |
+
if "Error" in content:
|
431 |
+
st.error(content)
|
432 |
+
else:
|
433 |
+
st.markdown("### β¨ Final Answer:")
|
434 |
+
st.success(content)
|
435 |
+
except Exception as e:
|
436 |
+
st.error(f"""
|
437 |
+
**Processing Error**
|
438 |
+
{str(e)}
|
439 |
+
Please check:
|
440 |
+
- API key configuration
|
441 |
+
- Account balance
|
442 |
+
- Network connection
|
443 |
+
""")
|
444 |
+
else:
|
445 |
+
st.warning("β οΈ Please enter a question first!")
|
446 |
|
447 |
with col2:
|
448 |
+
st.markdown("""
|
449 |
+
### π― How to Use
|
450 |
+
1. Enter your question in the text box
|
451 |
+
2. Click the search button
|
452 |
+
3. Review processing steps
|
453 |
+
4. See final answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
|
455 |
+
### π‘ Example Questions
|
456 |
+
- What's new in AI image recognition?
|
457 |
+
- How is Project B progressing?
|
458 |
+
- Recent machine learning trends?
|
|
|
459 |
""")
|
460 |
+
|
461 |
+
if __name__ == "__main__":
|
462 |
main()
|