Spaces:
Running
Running
# ------------------------------ | |
# Imports & Dependencies | |
# ------------------------------ | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langgraph.graph import END, StateGraph | |
from langgraph.prebuilt import ToolNode | |
from langgraph.graph.message import add_messages | |
from typing_extensions import TypedDict, Annotated | |
from typing import Sequence | |
import re | |
import os | |
import streamlit as st | |
import requests | |
from langchain.tools.retriever import create_retriever_tool | |
# ------------------------------ | |
# Dummy Data: Research & Development Texts | |
# ------------------------------ | |
research_texts = [ | |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%", | |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing", | |
"Latest Trends in Machine Learning Methods Using Quantum Computing" | |
] | |
development_texts = [ | |
"Project A: UI Design Completed, API Integration in Progress", | |
"Project B: Testing New Feature X, Bug Fixes Needed", | |
"Product Y: In the Performance Optimization Stage Before Release" | |
] | |
# ------------------------------ | |
# Text Splitting & Document Creation | |
# ------------------------------ | |
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10) | |
research_docs = splitter.create_documents(research_texts) | |
development_docs = splitter.create_documents(development_texts) | |
# ------------------------------ | |
# Creating Vector Stores with Embeddings | |
# ------------------------------ | |
embeddings = OpenAIEmbeddings( | |
model="text-embedding-3-large", | |
# dimensions=1024 # Uncomment if needed | |
) | |
research_vectorstore = Chroma.from_documents( | |
documents=research_docs, | |
embedding=embeddings, | |
collection_name="research_collection" | |
) | |
development_vectorstore = Chroma.from_documents( | |
documents=development_docs, | |
embedding=embeddings, | |
collection_name="development_collection" | |
) | |
research_retriever = research_vectorstore.as_retriever() | |
development_retriever = development_vectorstore.as_retriever() | |
# ------------------------------ | |
# Creating Retriever Tools | |
# ------------------------------ | |
research_tool = create_retriever_tool( | |
research_retriever, | |
"research_db_tool", | |
"Search information from the research database." | |
) | |
development_tool = create_retriever_tool( | |
development_retriever, | |
"development_db_tool", | |
"Search information from the development database." | |
) | |
tools = [research_tool, development_tool] | |
# ------------------------------ | |
# Agent Function & Workflow Functions | |
# ------------------------------ | |
class AgentState(TypedDict): | |
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages] | |
def agent(state: AgentState): | |
print("---CALL AGENT---") | |
messages = state["messages"] | |
if isinstance(messages[0], tuple): | |
user_message = messages[0][1] | |
else: | |
user_message = messages[0].content | |
prompt = f"""Given this user question: "{user_message}" | |
If it's about research or academic topics, respond EXACTLY in this format: | |
SEARCH_RESEARCH: <search terms> | |
If it's about development status, respond EXACTLY in this format: | |
SEARCH_DEV: <search terms> | |
Otherwise, just answer directly. | |
""" | |
headers = { | |
"Accept": "application/json", | |
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0", | |
"Content-Type": "application/json" | |
} | |
data = { | |
"model": "deepseek-chat", | |
"messages": [{"role": "user", "content": prompt}], | |
"temperature": 0.7, | |
"max_tokens": 1024 | |
} | |
response = requests.post( | |
"https://api.deepseek.com/v1/chat/completions", | |
headers=headers, | |
json=data, | |
verify=False | |
) | |
if response.status_code == 200: | |
response_text = response.json()['choices'][0]['message']['content'] | |
print("Raw response:", response_text) | |
if "SEARCH_RESEARCH:" in response_text: | |
query = response_text.split("SEARCH_RESEARCH:")[1].strip() | |
results = research_retriever.invoke(query) | |
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]} | |
elif "SEARCH_DEV:" in response_text: | |
query = response_text.split("SEARCH_DEV:")[1].strip() | |
results = development_retriever.invoke(query) | |
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]} | |
else: | |
return {"messages": [AIMessage(content=response_text)]} | |
else: | |
raise Exception(f"API call failed: {response.text}") | |
def simple_grade_documents(state: AgentState): | |
messages = state["messages"] | |
last_message = messages[-1] | |
print("Evaluating message:", last_message.content) | |
if "Results: [Document" in last_message.content: | |
print("---DOCS FOUND, GO TO GENERATE---") | |
return "generate" | |
else: | |
print("---NO DOCS FOUND, TRY REWRITE---") | |
return "rewrite" | |
def generate(state: AgentState): | |
print("---GENERATE FINAL ANSWER---") | |
messages = state["messages"] | |
question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content | |
last_message = messages[-1] | |
docs = "" | |
if "Results: [" in last_message.content: | |
results_start = last_message.content.find("Results: [") | |
docs = last_message.content[results_start:] | |
print("Documents found:", docs) | |
headers = { | |
"Accept": "application/json", | |
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0", | |
"Content-Type": "application/json" | |
} | |
prompt = f"""Based on these research documents, summarize the latest advancements in AI: | |
Question: {question} | |
Documents: {docs} | |
Focus on extracting and synthesizing the key findings from the research papers. | |
""" | |
data = { | |
"model": "deepseek-chat", | |
"messages": [{ | |
"role": "user", | |
"content": prompt | |
}], | |
"temperature": 0.7, | |
"max_tokens": 1024 | |
} | |
print("Sending generate request to API...") | |
response = requests.post( | |
"https://api.deepseek.com/v1/chat/completions", | |
headers=headers, | |
json=data, | |
verify=False | |
) | |
if response.status_code == 200: | |
response_text = response.json()['choices'][0]['message']['content'] | |
print("Final Answer:", response_text) | |
return {"messages": [AIMessage(content=response_text)]} | |
else: | |
raise Exception(f"API call failed: {response.text}") | |
def rewrite(state: AgentState): | |
print("---REWRITE QUESTION---") | |
messages = state["messages"] | |
original_question = messages[0].content if len(messages) > 0 else "N/A" | |
headers = { | |
"Accept": "application/json", | |
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0", | |
"Content-Type": "application/json" | |
} | |
data = { | |
"model": "deepseek-chat", | |
"messages": [{ | |
"role": "user", | |
"content": f"Rewrite this question to be more specific and clearer: {original_question}" | |
}], | |
"temperature": 0.7, | |
"max_tokens": 1024 | |
} | |
print("Sending rewrite request...") | |
response = requests.post( | |
"https://api.deepseek.com/v1/chat/completions", | |
headers=headers, | |
json=data, | |
verify=False | |
) | |
print("Status Code:", response.status_code) | |
print("Response:", response.text) | |
if response.status_code == 200: | |
response_text = response.json()['choices'][0]['message']['content'] | |
print("Rewritten question:", response_text) | |
return {"messages": [AIMessage(content=response_text)]} | |
else: | |
raise Exception(f"API call failed: {response.text}") | |
tools_pattern = re.compile(r"Action: .*") | |
def custom_tools_condition(state: AgentState): | |
messages = state["messages"] | |
last_message = messages[-1] | |
content = last_message.content | |
print("Checking tools condition:", content) | |
if tools_pattern.match(content): | |
print("Moving to retrieve...") | |
return "tools" | |
print("Moving to END...") | |
return END | |
# ------------------------------ | |
# Workflow Configuration using LangGraph (Corrected) | |
# ------------------------------ | |
workflow = StateGraph(AgentState) | |
# Add nodes | |
workflow.add_node("agent", agent) | |
retrieve_node = ToolNode(tools) | |
workflow.add_node("retrieve", retrieve_node) | |
workflow.add_node("rewrite", rewrite) | |
workflow.add_node("generate", generate) | |
# Set entry point | |
workflow.set_entry_point("agent") | |
# Define transitions | |
workflow.add_conditional_edges( | |
"agent", | |
custom_tools_condition, | |
{ | |
"tools": "retrieve", | |
END: END | |
} | |
) | |
workflow.add_conditional_edges( | |
"retrieve", | |
simple_grade_documents, | |
{ | |
"generate": "generate", | |
"rewrite": "rewrite" | |
} | |
) | |
workflow.add_edge("generate", END) | |
workflow.add_edge("rewrite", "agent") | |
# Compile the workflow | |
app = workflow.compile() | |
# ------------------------------ | |
# Processing Function | |
# ------------------------------ | |
def process_question(user_question, app, config): | |
"""Process user question through the workflow""" | |
events = [] | |
for event in app.stream({"messages": [("user", user_question)]}, config): | |
events.append(event) | |
return events | |
# ------------------------------ | |
# Streamlit App UI | |
# ------------------------------ | |
def main(): | |
st.set_page_config( | |
page_title="AI Research & Development Assistant", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
st.markdown(""" | |
<style> | |
.stApp { | |
background-color: #f8f9fa; | |
} | |
.stButton > button { | |
width: 100%; | |
margin-top: 20px; | |
} | |
.data-box { | |
padding: 20px; | |
border-radius: 10px; | |
margin: 10px 0; | |
} | |
.research-box { | |
background-color: #e3f2fd; | |
border-left: 5px solid #1976d2; | |
} | |
.dev-box { | |
background-color: #e8f5e9; | |
border-left: 5px solid #43a047; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
with st.sidebar: | |
st.header("π Available Data") | |
st.subheader("Research Database") | |
for text in research_texts: | |
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True) | |
st.subheader("Development Database") | |
for text in development_texts: | |
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True) | |
st.title("π€ AI Research & Development Assistant") | |
st.markdown("---") | |
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?") | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
if st.button("π Get Answer", use_container_width=True): | |
if query: | |
with st.spinner('Processing your question...'): | |
events = process_question(query, app, {"configurable": {"thread_id": "1"}}) | |
for event in events: | |
if 'agent' in event: | |
with st.expander("π Processing Step", expanded=True): | |
content = event['agent']['messages'][0].content | |
if "Results:" in content: | |
st.markdown("### π Retrieved Documents:") | |
docs_start = content.find("Results:") | |
docs = content[docs_start:] | |
st.info(docs) | |
elif 'generate' in event: | |
st.markdown("### β¨ Final Answer:") | |
st.success(event['generate']['messages'][0].content) | |
else: | |
st.warning("β οΈ Please enter a question first!") | |
with col2: | |
st.markdown(""" | |
### π― How to Use | |
1. Type your question in the text box | |
2. Click "Get Answer" to process | |
3. View retrieved documents and final answer | |
### π‘ Example Questions | |
- What are the latest advancements in AI research? | |
- What is the status of Project A? | |
- What are the current trends in machine learning? | |
""") | |
if __name__ == "__main__": | |
main() |