Spaces:
Running
Running
File size: 12,649 Bytes
1bf0128 06ee039 b54d7d2 06ee039 8588a31 b68b7bd 1e0350f 5e58a2d 1e0350f 06ee039 b7719bf 5e58a2d 1e0350f 85e6b5b b7719bf 5e58a2d 1e0350f 06ee039 1e0350f b7719bf 06ee039 b7719bf b54d7d2 5f3f5da 1e0350f b7719bf 5e58a2d b7719bf 5e58a2d 1e0350f b7719bf a1bb249 06ee039 b7719bf 8588a31 b7719bf 90dcb0c b7719bf 5e58a2d b7719bf 09db53f 5e58a2d 09db53f 06ee039 5e58a2d 06ee039 09db53f 5e58a2d b7719bf 90dcb0c 06ee039 5e58a2d 1e0350f 5e58a2d b7719bf 90dcb0c b7719bf 06ee039 b7719bf 90dcb0c b7719bf 5e58a2d b7719bf 90dcb0c b7719bf 06ee039 b7719bf 90dcb0c 5e58a2d 90dcb0c 5e58a2d 90dcb0c 5e58a2d 90dcb0c 5e58a2d 1e0350f 5e58a2d b7719bf 5e58a2d 09db53f 5e58a2d 90dcb0c b7719bf 5e58a2d 85e6b5b 5e58a2d 85e6b5b 1e0350f 5e58a2d 1e0350f 06ee039 1e0350f 90dcb0c b7719bf 5e58a2d 90dcb0c b7719bf 06ee039 b7719bf 90dcb0c 5e58a2d 90dcb0c b7719bf 06ee039 5e58a2d b7719bf 90dcb0c 5e58a2d b7719bf 06ee039 b7719bf 90dcb0c 5e58a2d b7719bf 5e58a2d 09db53f 5e58a2d 90dcb0c b7719bf 06ee039 b7719bf 90dcb0c b7719bf 06ee039 5e58a2d b7719bf 90dcb0c 06ee039 b7719bf 06ee039 b7719bf 90dcb0c 06ee039 5e58a2d b7719bf 5e58a2d 90dcb0c 5e58a2d 09db53f 90dcb0c 5e58a2d 06ee039 b68b7bd 06ee039 5e58a2d 90dcb0c b68b7bd 5e58a2d 90dcb0c b68b7bd 90dcb0c b68b7bd 90dcb0c 06ee039 90dcb0c b68b7bd 5e58a2d 90dcb0c b68b7bd 5e58a2d b7719bf b68b7bd 06ee039 1e0350f 06ee039 1e0350f 06ee039 1e0350f 09db53f 5e58a2d 09db53f 85e6b5b 90dcb0c b7719bf 06ee039 b7719bf 5e58a2d 06ee039 5e58a2d b7719bf 06ee039 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 90dcb0c 06ee039 90dcb0c 1e0350f 5e58a2d 1e0350f 5e58a2d 06ee039 1e0350f 5e58a2d 1e0350f b7719bf 1e0350f 5e58a2d 90dcb0c 1e0350f 09db53f 5e58a2d b7719bf 5e58a2d 09db53f b7719bf a1bb249 8588a31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence
import re
import os
import streamlit as st
import requests
from langchain.tools.retriever import create_retriever_tool
# ------------------------------
# Dummy Data: Research & Development Texts
# ------------------------------
research_texts = [
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing"
]
development_texts = [
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release"
]
# ------------------------------
# Text Splitting & Document Creation
# ------------------------------
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
research_docs = splitter.create_documents(research_texts)
development_docs = splitter.create_documents(development_texts)
# ------------------------------
# Creating Vector Stores with Embeddings
# ------------------------------
embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
# dimensions=1024 # Uncomment if needed
)
research_vectorstore = Chroma.from_documents(
documents=research_docs,
embedding=embeddings,
collection_name="research_collection"
)
development_vectorstore = Chroma.from_documents(
documents=development_docs,
embedding=embeddings,
collection_name="development_collection"
)
research_retriever = research_vectorstore.as_retriever()
development_retriever = development_vectorstore.as_retriever()
# ------------------------------
# Creating Retriever Tools
# ------------------------------
research_tool = create_retriever_tool(
research_retriever,
"research_db_tool",
"Search information from the research database."
)
development_tool = create_retriever_tool(
development_retriever,
"development_db_tool",
"Search information from the development database."
)
tools = [research_tool, development_tool]
# ------------------------------
# Agent Function & Workflow Functions
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
def agent(state: AgentState):
print("---CALL AGENT---")
messages = state["messages"]
if isinstance(messages[0], tuple):
user_message = messages[0][1]
else:
user_message = messages[0].content
prompt = f"""Given this user question: "{user_message}"
If it's about research or academic topics, respond EXACTLY in this format:
SEARCH_RESEARCH: <search terms>
If it's about development status, respond EXACTLY in this format:
SEARCH_DEV: <search terms>
Otherwise, just answer directly.
"""
headers = {
"Accept": "application/json",
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 1024
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
print("Raw response:", response_text)
if "SEARCH_RESEARCH:" in response_text:
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
results = research_retriever.invoke(query)
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
elif "SEARCH_DEV:" in response_text:
query = response_text.split("SEARCH_DEV:")[1].strip()
results = development_retriever.invoke(query)
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
else:
return {"messages": [AIMessage(content=response_text)]}
else:
raise Exception(f"API call failed: {response.text}")
def simple_grade_documents(state: AgentState):
messages = state["messages"]
last_message = messages[-1]
print("Evaluating message:", last_message.content)
if "Results: [Document" in last_message.content:
print("---DOCS FOUND, GO TO GENERATE---")
return "generate"
else:
print("---NO DOCS FOUND, TRY REWRITE---")
return "rewrite"
def generate(state: AgentState):
print("---GENERATE FINAL ANSWER---")
messages = state["messages"]
question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
last_message = messages[-1]
docs = ""
if "Results: [" in last_message.content:
results_start = last_message.content.find("Results: [")
docs = last_message.content[results_start:]
print("Documents found:", docs)
headers = {
"Accept": "application/json",
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
"Content-Type": "application/json"
}
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
Question: {question}
Documents: {docs}
Focus on extracting and synthesizing the key findings from the research papers.
"""
data = {
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": prompt
}],
"temperature": 0.7,
"max_tokens": 1024
}
print("Sending generate request to API...")
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
print("Final Answer:", response_text)
return {"messages": [AIMessage(content=response_text)]}
else:
raise Exception(f"API call failed: {response.text}")
def rewrite(state: AgentState):
print("---REWRITE QUESTION---")
messages = state["messages"]
original_question = messages[0].content if len(messages) > 0 else "N/A"
headers = {
"Accept": "application/json",
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Rewrite this question to be more specific and clearer: {original_question}"
}],
"temperature": 0.7,
"max_tokens": 1024
}
print("Sending rewrite request...")
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
print("Status Code:", response.status_code)
print("Response:", response.text)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
print("Rewritten question:", response_text)
return {"messages": [AIMessage(content=response_text)]}
else:
raise Exception(f"API call failed: {response.text}")
tools_pattern = re.compile(r"Action: .*")
def custom_tools_condition(state: AgentState):
messages = state["messages"]
last_message = messages[-1]
content = last_message.content
print("Checking tools condition:", content)
if tools_pattern.match(content):
print("Moving to retrieve...")
return "tools"
print("Moving to END...")
return END
# ------------------------------
# Workflow Configuration using LangGraph (Corrected)
# ------------------------------
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("agent", agent)
retrieve_node = ToolNode(tools)
workflow.add_node("retrieve", retrieve_node)
workflow.add_node("rewrite", rewrite)
workflow.add_node("generate", generate)
# Set entry point
workflow.set_entry_point("agent")
# Define transitions
workflow.add_conditional_edges(
"agent",
custom_tools_condition,
{
"tools": "retrieve",
END: END
}
)
workflow.add_conditional_edges(
"retrieve",
simple_grade_documents,
{
"generate": "generate",
"rewrite": "rewrite"
}
)
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")
# Compile the workflow
app = workflow.compile()
# ------------------------------
# Processing Function
# ------------------------------
def process_question(user_question, app, config):
"""Process user question through the workflow"""
events = []
for event in app.stream({"messages": [("user", user_question)]}, config):
events.append(event)
return events
# ------------------------------
# Streamlit App UI
# ------------------------------
def main():
st.set_page_config(
page_title="AI Research & Development Assistant",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.stApp {
background-color: #f8f9fa;
}
.stButton > button {
width: 100%;
margin-top: 20px;
}
.data-box {
padding: 20px;
border-radius: 10px;
margin: 10px 0;
}
.research-box {
background-color: #e3f2fd;
border-left: 5px solid #1976d2;
}
.dev-box {
background-color: #e8f5e9;
border-left: 5px solid #43a047;
}
</style>
""", unsafe_allow_html=True)
with st.sidebar:
st.header("π Available Data")
st.subheader("Research Database")
for text in research_texts:
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
st.subheader("Development Database")
for text in development_texts:
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
st.title("π€ AI Research & Development Assistant")
st.markdown("---")
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
col1, col2 = st.columns([1, 2])
with col1:
if st.button("π Get Answer", use_container_width=True):
if query:
with st.spinner('Processing your question...'):
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
for event in events:
if 'agent' in event:
with st.expander("π Processing Step", expanded=True):
content = event['agent']['messages'][0].content
if "Results:" in content:
st.markdown("### π Retrieved Documents:")
docs_start = content.find("Results:")
docs = content[docs_start:]
st.info(docs)
elif 'generate' in event:
st.markdown("### β¨ Final Answer:")
st.success(event['generate']['messages'][0].content)
else:
st.warning("β οΈ Please enter a question first!")
with col2:
st.markdown("""
### π― How to Use
1. Type your question in the text box
2. Click "Get Answer" to process
3. View retrieved documents and final answer
### π‘ Example Questions
- What are the latest advancements in AI research?
- What is the status of Project A?
- What are the current trends in machine learning?
""")
if __name__ == "__main__":
main() |