mgbam's picture
Update app.py
8f0f735 verified
raw
history blame
13.4 kB
# ------------------------------
# Imports & Dependencies (Enhanced)
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, List, Dict, Any
import chromadb
import re
import os
import streamlit as st
import requests
import time
import hashlib
from langchain.tools.retriever import create_retriever_tool
from datetime import datetime
# ------------------------------
# Enhanced Configuration
# ------------------------------
class AppConfig:
def __init__(self):
self.DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
self.CHROMA_PATH = "chroma_db"
self.MAX_RETRIES = 3
self.RETRY_DELAY = 1.5
self.DOCUMENT_CHUNK_SIZE = 300 # Increased from 100
self.DOCUMENT_OVERLAP = 50 # Added overlap for context preservation
self.SEARCH_K = 5 # Number of documents to retrieve
self.SEARCH_TYPE = "mmr" # Maximal Marginal Relevance
self.validate_config()
def validate_config(self):
if not self.DEEPSEEK_API_KEY:
st.error("""
**Critical Configuration Missing**
πŸ”‘ DeepSeek API key not found in environment variables.
Please configure through Hugging Face Space secrets:
1. Go to Space Settings β†’ Repository secrets
2. Add secret: Name=DEEPSEEK_API_KEY, Value=your_api_key
3. Rebuild Space
""")
st.stop()
config = AppConfig()
# ------------------------------
# Enhanced ChromaDB Setup
# ------------------------------
class ChromaManager:
def __init__(self):
os.makedirs(config.CHROMA_PATH, exist_ok=True)
self.client = chromadb.PersistentClient(path=config.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
# dimensions=1024 # Optional for large-scale deployments
)
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
"""Enhanced document processing with optimized chunking"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config.DOCUMENT_CHUNK_SIZE,
chunk_overlap=config.DOCUMENT_OVERLAP,
separators=["\n\n", "\n", "。", " "]
)
docs = text_splitter.create_documents(documents)
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name
)
# Initialize Chroma with improved parameters
chroma_manager = ChromaManager()
research_collection = chroma_manager.create_collection(research_texts, "research_collection")
dev_collection = chroma_manager.create_collection(development_texts, "development_collection")
# ------------------------------
# Enhanced Retriever Configuration
# ------------------------------
research_retriever = research_collection.as_retriever(
search_type=config.SEARCH_TYPE,
search_kwargs={"k": config.SEARCH_K, "fetch_k": config.SEARCH_K * 2}
)
development_retriever = dev_collection.as_retriever(
search_type=config.SEARCH_TYPE,
search_kwargs={"k": config.SEARCH_K, "fetch_k": config.SEARCH_K * 2}
)
# ------------------------------
# Enhanced Document Processing
# ------------------------------
class DocumentProcessor:
@staticmethod
def deduplicate_documents(docs: List[Any]) -> List[Any]:
"""Advanced deduplication using content hashing"""
seen = set()
unique_docs = []
for doc in docs:
content_hash = hashlib.md5(doc.page_content.encode()).hexdigest()
if content_hash not in seen:
unique_docs.append(doc)
seen.add(content_hash)
return unique_docs
@staticmethod
def extract_key_points(docs: List[Any]) -> str:
"""Semantic analysis of retrieved documents"""
key_points = []
categories = {
"quantum": ["quantum", "qpu", "qubit"],
"vision": ["image", "recognition", "vision"],
"nlp": ["transformer", "language", "llm"]
}
for doc in docs:
content = doc.page_content.lower()
# Categorization logic
if any(kw in content for kw in categories["quantum"]):
key_points.append("- Quantum computing integration showing promising results")
if any(kw in content for kw in categories["vision"]):
key_points.append("- Computer vision models achieving state-of-the-art accuracy")
if any(kw in content for kw in categories["nlp"]):
key_points.append("- NLP architectures evolving with memory-augmented transformers")
return "\n".join(list(set(key_points))) # Remove duplicates
# ------------------------------
# Enhanced Agent Workflow (Additions)
# ------------------------------
class EnhancedAgent:
def __init__(self):
self.session_stats = {
"processing_times": [],
"doc_counts": [],
"error_count": 0
}
def api_request_with_retry(self, endpoint: str, payload: Dict) -> Dict:
"""Robust API handling with exponential backoff"""
headers = {
"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
}
for attempt in range(config.MAX_RETRIES):
try:
response = requests.post(
endpoint,
headers=headers,
json=payload,
timeout=30,
verify=False
)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
if e.response.status_code == 429:
delay = config.RETRY_DELAY ** (attempt + 1)
time.sleep(delay)
continue
raise
raise Exception(f"API request failed after {config.MAX_RETRIES} attempts")
# ------------------------------
# Enhanced Streamlit UI (Dark Professional Theme)
# ------------------------------
class UITheme:
primary_color = "#2E86C1"
secondary_color = "#28B463"
background_color = "#1A1A1A"
text_color = "#EAECEE"
@classmethod
def apply(cls):
st.markdown(f"""
<style>
.stApp {{
background-color: {cls.background_color};
color: {cls.text_color};
}}
.stTextArea textarea {{
background-color: #2D2D2D !important;
color: {cls.text_color} !important;
border: 1px solid {cls.primary_color};
}}
.stButton > button {{
background-color: {cls.primary_color};
color: white;
border: none;
padding: 12px 28px;
border-radius: 6px;
transition: all 0.3s ease;
font-weight: 500;
}}
.stButton > button:hover {{
background-color: {cls.secondary_color};
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}}
.data-box {{
background-color: #2D2D2D;
border-left: 4px solid {cls.primary_color};
padding: 18px;
margin: 14px 0;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
}}
.st-expander {{
background-color: #2D2D2D;
border: 1px solid #3D3D3D;
border-radius: 6px;
margin: 12px 0;
}}
.stAlert {{
background-color: #423a2d !important;
border: 1px solid #E67E22 !important;
}}
</style>
""", unsafe_allow_html=True)
# ------------------------------
# Enhanced Main Application
# ------------------------------
def main():
UITheme.apply()
st.set_page_config(
page_title="AI Research Assistant Pro",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://example.com/docs',
'Report a bug': 'https://example.com/issues',
'About': "v2.1 | Enhanced Research Assistant"
}
)
with st.sidebar:
st.header("πŸ“‚ Knowledge Bases")
with st.expander("Research Database", expanded=True):
for text in research_texts:
st.markdown(f'<div class="data-box research-box">{text}</div>',
unsafe_allow_html=True)
with st.expander("Development Database"):
for text in development_texts:
st.markdown(f'<div class="data-box dev-box">{text}</div>',
unsafe_allow_html=True)
st.title("πŸ”¬ AI Research Assistant Pro")
st.markdown("---")
# Enhanced query input with examples
query = st.text_area(
"Research Query Input",
height=120,
placeholder="Enter your research question...\nExample: What are recent breakthroughs in quantum machine learning?",
help="Be specific about domains (e.g., computer vision, NLP) for better results"
)
col1, col2 = st.columns([1, 2])
with col1:
if st.button("πŸš€ Analyze Documents", use_container_width=True):
if not query:
st.warning("⚠️ Please enter a research question")
return
with st.status("Processing Workflow...", expanded=True) as status:
try:
start_time = time.time()
# Document Retrieval Phase
status.update(label="πŸ” Retrieving Relevant Documents", state="running")
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
# Processing Phase
status.update(label="πŸ“Š Analyzing Content", state="running")
processed_data = []
for event in events:
if 'agent' in event:
content = event['agent']['messages'][0].content
if "Results:" in content:
docs_str = content.split("Results: ")[1]
docs = eval(docs_str)
unique_docs = DocumentProcessor.deduplicate_documents(docs)
key_points = DocumentProcessor.extract_key_points(unique_docs)
processed_data.append(key_points)
with st.expander("πŸ“„ Retrieved Documents", expanded=False):
st.info(f"Found {len(unique_docs)} unique documents")
st.write(docs_str)
elif 'generate' in event:
final_answer = event['generate']['messages'][0].content
status.update(label="βœ… Analysis Complete", state="complete")
st.markdown("## πŸ“ Research Summary")
st.markdown(final_answer)
# Performance metrics
proc_time = time.time() - start_time
st.caption(f"⏱️ Processed in {proc_time:.2f}s | {len(processed_data)} document clusters")
except Exception as e:
status.update(label="❌ Processing Failed", state="error")
st.error(f"""
**Critical Error**
{str(e)}
Recommended Actions:
- Verify API key configuration
- Check service status
- Simplify query complexity
""")
# Log error with timestamp
error_log = f"{datetime.now()} | {str(e)}\n"
with open("error_log.txt", "a") as f:
f.write(error_log)
with col2:
st.markdown("""
## πŸ“˜ Usage Guide
**1. Query Formulation**
- Be domain-specific (e.g., "quantum NLP")
- Include timeframes (e.g., "2023-2024 advances")
**2. Results Interpretation**
- Expand document sections for sources
- Key points highlight technical breakthroughs
- Summary shows commercial implications
**3. Advanced Features**
- `CTRL+Enter` for quick reruns
- Click documents for raw context
- Export results via screenshot
""")
if __name__ == "__main__":
main()