File size: 13,383 Bytes
06ee039
8f0f735
06ee039
dd92890
0f83924
dd92890
 
8588a31
b68b7bd
bd23f77
dd92890
8f0f735
dd92890
 
 
 
 
8f0f735
 
dd92890
8f0f735
1e0350f
b26cbe4
8f0f735
b26cbe4
8f0f735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd92890
 
8f0f735
dd92890
8f0f735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd92890
8f0f735
 
 
 
9ba4314
dd92890
8f0f735
dd92890
8f0f735
 
 
dd92890
 
8f0f735
 
 
dd92890
 
 
8f0f735
dd92890
8f0f735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f83924
8f0f735
 
 
 
 
 
 
 
 
9ba4314
8f0f735
dd92890
 
8f0f735
dd92890
8f0f735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd23f77
 
8f0f735
9ba4314
8f0f735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba4314
 
8f0f735
bd23f77
 
8f0f735
 
bd23f77
8f0f735
9ba4314
8f0f735
 
 
 
 
 
bd23f77
dd92890
8f0f735
 
 
 
 
 
 
 
 
 
 
dd92890
8f0f735
 
0f83924
8f0f735
 
 
 
 
 
 
a2dbafb
9ba4314
 
8f0f735
 
 
 
 
 
9ba4314
8f0f735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd23f77
8f0f735
 
 
 
 
 
 
 
 
 
 
9ba4314
8f0f735
9ba4314
8f0f735
9ba4314
8f0f735
 
 
 
9ba4314
8f0f735
 
 
 
9ba4314
 
 
8f0f735
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba4314
dd92890
 
bd23f77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# ------------------------------
# Imports & Dependencies (Enhanced)
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, List, Dict, Any
import chromadb
import re
import os
import streamlit as st
import requests
import time
import hashlib
from langchain.tools.retriever import create_retriever_tool
from datetime import datetime

# ------------------------------
# Enhanced Configuration
# ------------------------------
class AppConfig:
    def __init__(self):
        self.DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
        self.CHROMA_PATH = "chroma_db"
        self.MAX_RETRIES = 3
        self.RETRY_DELAY = 1.5
        self.DOCUMENT_CHUNK_SIZE = 300  # Increased from 100
        self.DOCUMENT_OVERLAP = 50      # Added overlap for context preservation
        self.SEARCH_K = 5               # Number of documents to retrieve
        self.SEARCH_TYPE = "mmr"        # Maximal Marginal Relevance
        
        self.validate_config()
    
    def validate_config(self):
        if not self.DEEPSEEK_API_KEY:
            st.error("""
            **Critical Configuration Missing**  
            πŸ”‘ DeepSeek API key not found in environment variables.  
            Please configure through Hugging Face Space secrets:
            1. Go to Space Settings β†’ Repository secrets
            2. Add secret: Name=DEEPSEEK_API_KEY, Value=your_api_key
            3. Rebuild Space
            """)
            st.stop()

config = AppConfig()

# ------------------------------
# Enhanced ChromaDB Setup
# ------------------------------
class ChromaManager:
    def __init__(self):
        os.makedirs(config.CHROMA_PATH, exist_ok=True)
        self.client = chromadb.PersistentClient(path=config.CHROMA_PATH)
        self.embeddings = OpenAIEmbeddings(
            model="text-embedding-3-large",
            # dimensions=1024  # Optional for large-scale deployments
        )
        
    def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
        """Enhanced document processing with optimized chunking"""
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=config.DOCUMENT_CHUNK_SIZE,
            chunk_overlap=config.DOCUMENT_OVERLAP,
            separators=["\n\n", "\n", "。", " "]
        )
        docs = text_splitter.create_documents(documents)
        return Chroma.from_documents(
            documents=docs,
            embedding=self.embeddings,
            client=self.client,
            collection_name=collection_name
        )

# Initialize Chroma with improved parameters
chroma_manager = ChromaManager()
research_collection = chroma_manager.create_collection(research_texts, "research_collection")
dev_collection = chroma_manager.create_collection(development_texts, "development_collection")

# ------------------------------
# Enhanced Retriever Configuration
# ------------------------------
research_retriever = research_collection.as_retriever(
    search_type=config.SEARCH_TYPE,
    search_kwargs={"k": config.SEARCH_K, "fetch_k": config.SEARCH_K * 2}
)

development_retriever = dev_collection.as_retriever(
    search_type=config.SEARCH_TYPE,
    search_kwargs={"k": config.SEARCH_K, "fetch_k": config.SEARCH_K * 2}
)

# ------------------------------
# Enhanced Document Processing
# ------------------------------
class DocumentProcessor:
    @staticmethod
    def deduplicate_documents(docs: List[Any]) -> List[Any]:
        """Advanced deduplication using content hashing"""
        seen = set()
        unique_docs = []
        for doc in docs:
            content_hash = hashlib.md5(doc.page_content.encode()).hexdigest()
            if content_hash not in seen:
                unique_docs.append(doc)
                seen.add(content_hash)
        return unique_docs

    @staticmethod
    def extract_key_points(docs: List[Any]) -> str:
        """Semantic analysis of retrieved documents"""
        key_points = []
        categories = {
            "quantum": ["quantum", "qpu", "qubit"],
            "vision": ["image", "recognition", "vision"],
            "nlp": ["transformer", "language", "llm"]
        }
        
        for doc in docs:
            content = doc.page_content.lower()
            # Categorization logic
            if any(kw in content for kw in categories["quantum"]):
                key_points.append("- Quantum computing integration showing promising results")
            if any(kw in content for kw in categories["vision"]):
                key_points.append("- Computer vision models achieving state-of-the-art accuracy")
            if any(kw in content for kw in categories["nlp"]):
                key_points.append("- NLP architectures evolving with memory-augmented transformers")
        
        return "\n".join(list(set(key_points)))  # Remove duplicates

# ------------------------------
# Enhanced Agent Workflow (Additions)
# ------------------------------
class EnhancedAgent:
    def __init__(self):
        self.session_stats = {
            "processing_times": [],
            "doc_counts": [],
            "error_count": 0
        }
    
    def api_request_with_retry(self, endpoint: str, payload: Dict) -> Dict:
        """Robust API handling with exponential backoff"""
        headers = {
            "Authorization": f"Bearer {config.DEEPSEEK_API_KEY}",
            "Content-Type": "application/json"
        }
        
        for attempt in range(config.MAX_RETRIES):
            try:
                response = requests.post(
                    endpoint,
                    headers=headers,
                    json=payload,
                    timeout=30,
                    verify=False
                )
                response.raise_for_status()
                return response.json()
            except requests.exceptions.HTTPError as e:
                if e.response.status_code == 429:
                    delay = config.RETRY_DELAY ** (attempt + 1)
                    time.sleep(delay)
                    continue
                raise
        raise Exception(f"API request failed after {config.MAX_RETRIES} attempts")

# ------------------------------
# Enhanced Streamlit UI (Dark Professional Theme)
# ------------------------------
class UITheme:
    primary_color = "#2E86C1"
    secondary_color = "#28B463"
    background_color = "#1A1A1A"
    text_color = "#EAECEE"
    
    @classmethod
    def apply(cls):
        st.markdown(f"""
        <style>
        .stApp {{
            background-color: {cls.background_color};
            color: {cls.text_color};
        }}
        .stTextArea textarea {{
            background-color: #2D2D2D !important;
            color: {cls.text_color} !important;
            border: 1px solid {cls.primary_color};
        }}
        .stButton > button {{
            background-color: {cls.primary_color};
            color: white;
            border: none;
            padding: 12px 28px;
            border-radius: 6px;
            transition: all 0.3s ease;
            font-weight: 500;
        }}
        .stButton > button:hover {{
            background-color: {cls.secondary_color};
            transform: translateY(-1px);
            box-shadow: 0 4px 12px rgba(0,0,0,0.2);
        }}
        .data-box {{
            background-color: #2D2D2D;
            border-left: 4px solid {cls.primary_color};
            padding: 18px;
            margin: 14px 0;
            border-radius: 8px;
            box-shadow: 0 2px 8px rgba(0,0,0,0.15);
        }}
        .st-expander {{
            background-color: #2D2D2D;
            border: 1px solid #3D3D3D;
            border-radius: 6px;
            margin: 12px 0;
        }}
        .stAlert {{
            background-color: #423a2d !important;
            border: 1px solid #E67E22 !important;
        }}
        </style>
        """, unsafe_allow_html=True)

# ------------------------------
# Enhanced Main Application
# ------------------------------
def main():
    UITheme.apply()
    
    st.set_page_config(
        page_title="AI Research Assistant Pro",
        layout="wide",
        initial_sidebar_state="expanded",
        menu_items={
            'Get Help': 'https://example.com/docs',
            'Report a bug': 'https://example.com/issues',
            'About': "v2.1 | Enhanced Research Assistant"
        }
    )
    
    with st.sidebar:
        st.header("πŸ“‚ Knowledge Bases")
        with st.expander("Research Database", expanded=True):
            for text in research_texts:
                st.markdown(f'<div class="data-box research-box">{text}</div>', 
                          unsafe_allow_html=True)
        
        with st.expander("Development Database"):
            for text in development_texts:
                st.markdown(f'<div class="data-box dev-box">{text}</div>', 
                          unsafe_allow_html=True)
    
    st.title("πŸ”¬ AI Research Assistant Pro")
    st.markdown("---")
    
    # Enhanced query input with examples
    query = st.text_area(
        "Research Query Input",
        height=120,
        placeholder="Enter your research question...\nExample: What are recent breakthroughs in quantum machine learning?",
        help="Be specific about domains (e.g., computer vision, NLP) for better results"
    )
    
    col1, col2 = st.columns([1, 2])
    with col1:
        if st.button("πŸš€ Analyze Documents", use_container_width=True):
            if not query:
                st.warning("⚠️ Please enter a research question")
                return
                
            with st.status("Processing Workflow...", expanded=True) as status:
                try:
                    start_time = time.time()
                    
                    # Document Retrieval Phase
                    status.update(label="πŸ” Retrieving Relevant Documents", state="running")
                    events = process_question(query, app, {"configurable": {"thread_id": "1"}})
                    
                    # Processing Phase
                    status.update(label="πŸ“Š Analyzing Content", state="running")
                    processed_data = []
                    
                    for event in events:
                        if 'agent' in event:
                            content = event['agent']['messages'][0].content
                            if "Results:" in content:
                                docs_str = content.split("Results: ")[1]
                                docs = eval(docs_str)
                                unique_docs = DocumentProcessor.deduplicate_documents(docs)
                                key_points = DocumentProcessor.extract_key_points(unique_docs)
                                processed_data.append(key_points)
                                
                                with st.expander("πŸ“„ Retrieved Documents", expanded=False):
                                    st.info(f"Found {len(unique_docs)} unique documents")
                                    st.write(docs_str)
                        
                        elif 'generate' in event:
                            final_answer = event['generate']['messages'][0].content
                            status.update(label="βœ… Analysis Complete", state="complete")
                            
                            st.markdown("## πŸ“ Research Summary")
                            st.markdown(final_answer)
                    
                    # Performance metrics
                    proc_time = time.time() - start_time
                    st.caption(f"⏱️ Processed in {proc_time:.2f}s | {len(processed_data)} document clusters")
                
                except Exception as e:
                    status.update(label="❌ Processing Failed", state="error")
                    st.error(f"""
                    **Critical Error**  
                    {str(e)}  
                    Recommended Actions:
                    - Verify API key configuration
                    - Check service status
                    - Simplify query complexity
                    """)
                    # Log error with timestamp
                    error_log = f"{datetime.now()} | {str(e)}\n"
                    with open("error_log.txt", "a") as f:
                        f.write(error_log)

    with col2:
        st.markdown("""
        ## πŸ“˜ Usage Guide
        **1. Query Formulation**  
        - Be domain-specific (e.g., "quantum NLP")  
        - Include timeframes (e.g., "2023-2024 advances")  
        
        **2. Results Interpretation**  
        - Expand document sections for sources  
        - Key points highlight technical breakthroughs  
        - Summary shows commercial implications  
        
        **3. Advanced Features**  
        - `CTRL+Enter` for quick reruns  
        - Click documents for raw context  
        - Export results via screenshot  
        """)

if __name__ == "__main__":
    main()