File size: 11,125 Bytes
e69fb50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import gradio as gr
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    TextIteratorStreamer,
)
import threading
import time

# -----------------------------------------------------------------------------
# 1. MODEL LOADING
# -----------------------------------------------------------------------------
# In this advanced example, we'll instantiate the model directly (instead of using pipeline).
# We'll do streaming outputs via TextIteratorStreamer.

MODEL_NAME = "microsoft/phi-4"  # Replace with an actual HF model if phi-4 is unavailable
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

try:
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
except:
    # Fallback if model is not found or large. Here we default to a smaller model
    MODEL_NAME = "gpt2"
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to(DEVICE)

model.eval()


# -----------------------------------------------------------------------------
# 2. CONVERSATION / PROMPTS
# -----------------------------------------------------------------------------
# We'll keep track of conversation using a list of dictionaries:
# [
#   {"role": "system",    "content": "..."},
#   {"role": "developer", "content": "..."},
#   {"role": "user",      "content": "User message"},
#   {"role": "assistant", "content": "Assistant answer"},
#   ...
# ]
# 
# We’ll also build in a mock retrieval system that merges knowledge snippets 
# into the final prompt if the user chooses to do so.

DEFAULT_SYSTEM_PROMPT = (
    "You are Philos, an advanced AI system created by ACC (Algorithmic Computer-generated Consciousness). "
    "Answer user queries accurately, thoroughly, and helpfully. Keep your responses relevant and correct."
)

DEFAULT_DEVELOPER_PROMPT = (
    "Ensure that you respond in a style that is professional, clear, and approachable. "
    "Include reasoning steps if needed, but keep them concise."
)

# A small dictionary to emulate knowledge retrieval
# In real scenarios, you might use an actual vector DB + retrieval method
MOCK_KB = {
    "python": "Python is a high-level, interpreted programming language famous for its readability and flexibility.",
    "accelerate library": "The accelerate library by HF helps in distributed training and inference.",
    "phi-4 architecture": "phi-4 is a 14B-parameter, decoder-only Transformer with a 16K context window.",
}

def retrieve_knowledge(user_query):
    # Simple naive approach: check keywords in user query
    # Return a knowledge snippet if found
    matches = []
    for keyword, snippet in MOCK_KB.items():
        if keyword.lower() in user_query.lower():
            matches.append(snippet)
    return matches

# -----------------------------------------------------------------------------
# 3. HELPER: Build the prompt from conversation
# -----------------------------------------------------------------------------
def build_prompt(conversation):
    """
    Convert conversation (list of role/content dicts) into a single text prompt 
    that the model can process. We adopt a simple format:
        system, developer, user, assistant, ...
    """
    prompt = ""
    for msg in conversation:
        if msg["role"] == "system":
            prompt += f"[System]\n{msg['content']}\n"
        elif msg["role"] == "developer":
            prompt += f"[Developer]\n{msg['content']}\n"
        elif msg["role"] == "user":
            prompt += f"[User]\n{msg['content']}\n"
        else:  # assistant
            prompt += f"[Assistant]\n{msg['content']}\n"
    prompt += "[Assistant]\n"  # We end with an assistant role so model can continue
    return prompt


# -----------------------------------------------------------------------------
# 4. STREAMING GENERATION
# -----------------------------------------------------------------------------
def generate_tokens_stream(prompt, temperature=0.7, top_p=0.9, max_new_tokens=128):
    """
    Uses TextIteratorStreamer to yield tokens one by one (or in small chunks).
    """
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(DEVICE)

    generation_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id,
    )

    # We'll run generation in a background thread, streaming tokens
    thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream tokens
    partial_text = ""
    for new_token in streamer:
        partial_text += new_token
        yield partial_text

    thread.join()


# -----------------------------------------------------------------------------
# 5. MAIN CHAT FUNCTION
# -----------------------------------------------------------------------------
def advanced_chat(user_msg, conversation, system_prompt, dev_prompt, retrieve_flg, temperature, top_p):
    """
    - Update conversation with the user's message
    - Optionally retrieve knowledge and incorporate into the system or developer prompt
    - Build the final prompt
    - Stream the assistant's reply
    """
    # If user message is empty
    if not user_msg.strip():
        yield "Please enter a message."
        return

    # 1) Construct or update system/dev prompts
    system_message = {"role": "system", "content": system_prompt}
    developer_message = {"role": "developer", "content": dev_prompt}

    # 2) Insert or replace system/dev in the conversation
    #    We'll assume the first system/dev messages are at the start of conversation
    #    or add them if not present
    filtered = [msg for msg in conversation if msg["role"] not in ["system", "developer"]]
    conversation = [system_message, developer_message] + filtered

    # 3) Append user's message
    conversation.append({"role": "user", "content": user_msg})

    # 4) Retrieve knowledge if user toggled "Include knowledge retrieval"
    if retrieve_flg:
        knowledge_snippets = retrieve_knowledge(user_msg)
        if knowledge_snippets:
            # We can just append them to developer or system content for simplicity
            knowledge_text = "\n".join(["[Knowledge] " + s for s in knowledge_snippets])
            conversation[1]["content"] += f"\n\n[Additional Knowledge]\n{knowledge_text}"

    # 5) Build final prompt
    prompt = build_prompt(conversation)

    # 6) Stream the assistant’s response
    partial_response = ""
    for partial_text in generate_tokens_stream(prompt, temperature, top_p):
        partial_response = partial_text
        yield partial_text  # Send partial tokens to Gradio for display

    # 7) Now that generation is complete, append final assistant message
    conversation.append({"role": "assistant", "content": partial_response})


# -----------------------------------------------------------------------------
# 6. BUILD GRADIO INTERFACE
# -----------------------------------------------------------------------------
def build_ui():
    with gr.Blocks(title="PhilosBeta-Advanced", css="#chatbot{height:550px} .overflow-y-auto{max-height:550px}") as demo:

        gr.Markdown("# **PhilosBeta: Advanced Demo**")
        gr.Markdown(
            "An example of multi-turn conversation with streaming responses, "
            "optional retrieval, and custom system/developer prompts."
        )

        # State to store the conversation as a list of role/content dicts
        conversation_state = gr.State([])

        # TEXT ELEMENTS
        with gr.Row():
            with gr.Column():
                system_prompt_box = gr.Textbox(
                    label="System Prompt",
                    value=DEFAULT_SYSTEM_PROMPT,
                    lines=3
                )
                developer_prompt_box = gr.Textbox(
                    label="Developer Prompt",
                    value=DEFAULT_DEVELOPER_PROMPT,
                    lines=3
                )
            with gr.Column():
                retrieve_flag = gr.Checkbox(label="Include Knowledge Retrieval", value=False)
                temperature_slider = gr.Slider(0.0, 2.0, 0.7, step=0.1, label="Temperature")
                top_p_slider = gr.Slider(0.0, 1.0, 0.9, step=0.05, label="Top-p")
                max_tokens_info = gr.Markdown("Max new tokens = 128 (fixed in code).")

        # MAIN CHAT UI
        chatbox = gr.Chatbot(label="Philos Conversation", elem_id="chatbot").style(height=500)
        user_input = gr.Textbox(
            label="Your Message",
            placeholder="Type here...",
            lines=3
        )
        send_btn = gr.Button("Send", variant="primary")

        # ---------------------------------------------------------------------
        # ACTION: Handle user input
        # ---------------------------------------------------------------------
        def user_send(
            user_text, conversation, sys_prompt, dev_prompt, retrieve_flg, temperature, top_p
        ):
            """
            This function calls advanced_chat() and streams tokens back to update the Chatbot UI.
            """
            # We'll create a generator to update the Chatbot in real-time
            message_stream = advanced_chat(
                user_msg=user_text,
                conversation=conversation,
                system_prompt=sys_prompt,
                dev_prompt=dev_prompt,
                retrieve_flg=retrieve_flg,
                temperature=temperature,
                top_p=top_p
            )
            return message_stream, conversation

        # Gradio can handle generator outputs for streaming. 
        # We map the streamed tokens to the Chatbot component in real-time.
        chatbox_stream = gr.Chatbot.update()
        send_btn.click(
            fn=user_send,
            inputs=[
                user_input,
                conversation_state,
                system_prompt_box,
                developer_prompt_box,
                retrieve_flag,
                temperature_slider,
                top_p_slider,
            ],
            outputs=[chatbox_stream, conversation_state],
        )

        # We also let the user press Enter to send messages
        user_input.submit(
            fn=user_send,
            inputs=[
                user_input,
                conversation_state,
                system_prompt_box,
                developer_prompt_box,
                retrieve_flag,
                temperature_slider,
                top_p_slider,
            ],
            outputs=[chatbox_stream, conversation_state],
        )

    return demo


# -----------------------------------------------------------------------------
# 7. LAUNCH
# -----------------------------------------------------------------------------
if __name__ == "__main__":
    ui = build_ui()
    ui.launch()