File size: 17,870 Bytes
c08faed b5fce9d c08faed 5bd4d74 c08faed 51fb89c 12ef31b b5fce9d 51fb89c b5fce9d 51fb89c b5fce9d 51fb89c b5fce9d 51fb89c b5fce9d 51fb89c b5fce9d 51fb89c b5fce9d 51fb89c b5fce9d 51fb89c b5fce9d c08faed 272b87c b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 1aae43a b5fce9d 1aae43a b5fce9d 1aae43a b5fce9d 1aae43a b5fce9d f72077b f7b84f1 b5fce9d 1aae43a 1956035 b5fce9d 1aae43a 5bd4d74 b5fce9d 51fb89c b5fce9d 272b87c b5fce9d f72077b 272b87c f72077b 1aae43a b5fce9d 1aae43a b5fce9d 1aae43a b5fce9d 1aae43a b5fce9d 1aae43a b5fce9d 1aae43a 1956035 b5fce9d 5bd4d74 272b87c b5fce9d 5bd4d74 b5fce9d 5bd4d74 1aae43a b5fce9d 5bd4d74 b5fce9d 5bd4d74 1aae43a b5fce9d 5bd4d74 b5fce9d 1aae43a 5bd4d74 51fb89c b5fce9d f72077b b5fce9d 1aae43a b5fce9d 5bd4d74 272b87c b5fce9d 1956035 b5fce9d 12ef31b b5fce9d 1956035 272b87c 1956035 272b87c b5fce9d 51fb89c 272b87c b5fce9d 272b87c b5fce9d 272b87c 1956035 272b87c 1956035 b5fce9d 12ef31b b5fce9d 272b87c b5fce9d 272b87c f72077b 272b87c b5fce9d 1aae43a 1956035 272b87c b5fce9d 272b87c b5fce9d 272b87c b5fce9d 272b87c b5fce9d c08faed b5fce9d 272b87c 51fb89c b5fce9d 1aae43a 1956035 51fb89c f72077b 51fb89c f72077b 1aae43a b5fce9d 1aae43a 51fb89c 1aae43a 51fb89c f7b84f1 b5fce9d f7b84f1 c08faed b5fce9d 1956035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import io
import json
import warnings
import google.generativeai as genai
import os
from contextlib import redirect_stdout
# --- Configuration ---
warnings.filterwarnings('ignore')
# --- Expert-Crafted Dark Theme CSS ---
CSS = """
/* --- Phoenix UI Custom Dark CSS --- */
/* Stat Card Styling */
.stat-card {
border-radius: 12px !important;
padding: 20px !important;
background: #1f2937 !important; /* Dark blue-gray background */
border: 1px solid #374151 !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
text-align: center;
}
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
.stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; }
/* General Layout & Feel */
.gradio-container { font-family: 'Inter', sans-serif; }
.gr-button { box-shadow: 0 1px 2px 0 rgba(0,0,0,0.05); }
/* Sidebar Styling */
.sidebar {
background-color: #111827 !important; /* Very dark blue-gray */
padding: 15px;
border-right: 1px solid #374151 !important;
min-height: 100vh;
}
.sidebar .gr-button {
width: 100%;
text-align: left !important;
background: none !important;
border: none !important;
box-shadow: none !important;
color: #d1d5db !important; /* Light gray text for readability */
font-size: 16px !important;
padding: 12px 10px !important;
margin-bottom: 8px !important;
border-radius: 8px !important;
}
.sidebar .gr-button:hover { background-color: #374151 !important; } /* Hover state */
.sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; } /* Selected state with primary color */
/* AI Co-pilot Styling */
.code-block { border: 1px solid #374151 !important; border-radius: 8px; }
.explanation-block {
background-color: #1e3a8a !important; /* Dark blue background */
border-left: 4px solid #3b82f6 !important; /* Brighter blue border */
padding: 12px;
color: #e5e7eb !important;
}
"""
# --- Helper and Core Functions (Unchanged) ---
def safe_exec(code_string: str, local_vars: dict):
output_buffer = io.StringIO()
try:
with redirect_stdout(output_buffer):
exec(code_string, globals(), local_vars)
stdout = output_buffer.getvalue()
fig = local_vars.get('fig')
result_df = local_vars.get('result_df')
return stdout, fig, result_df, None
except Exception as e:
return None, None, None, f"Execution Error: {str(e)}"
def load_and_process_file(file_obj, state_dict):
if file_obj is None: return state_dict, "Please upload a file.", *[gr.update(visible=False)] * 4
try:
df = pd.read_csv(file_obj.name, low_memory=False)
for col in df.select_dtypes(include=['object']).columns:
try: df[col] = pd.to_datetime(df[col], errors='raise')
except (ValueError, TypeError): continue
metadata = extract_dataset_metadata(df)
state_dict = {'df': df, 'metadata': metadata, 'filename': os.path.basename(file_obj.name), 'dashboard_plots': []}
status_msg = f"β
**{state_dict['filename']}** loaded successfully."
cockpit_update = gr.update(visible=True)
welcome_update = gr.update(visible=False)
rows, cols = metadata['shape']
quality = metadata['data_quality']
return (state_dict, status_msg, welcome_update, cockpit_update, gr.update(visible=False), gr.update(visible=False),
gr.update(value=f"{rows:,}"), gr.update(value=cols), gr.update(value=f"{quality}%"), gr.update(value=f"{len(metadata['datetime_cols'])}"),
gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']))
except Exception as e:
return state_dict, f"β **Error:** {e}", *[gr.update()] * 11
def extract_dataset_metadata(df: pd.DataFrame):
rows, cols = df.shape
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist()
data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols, 'dtypes': df.dtypes.to_string(), 'head': df.head().to_string(), 'data_quality': data_quality}
def switch_page(page_name):
return (gr.update(visible=page_name=="cockpit"), gr.update(visible=page_name=="deep_dive"), gr.update(visible=page_name=="co-pilot"))
def get_ai_suggestions(state_dict, api_key):
if not api_key: return "Enter your Gemini API key to get suggestions.", *[gr.update(visible=False)]*5
if not state_dict: return "Upload data first.", *[gr.update(visible=False)]*5
metadata = state_dict['metadata']
prompt = f"""
Based on the following dataset metadata, generate 3 to 5 specific, actionable, and interesting analytical questions...
Return ONLY a JSON list of strings. Example: ["What is the trend of sales over time?", "Which category has the highest average price?"]
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
suggestions = json.loads(response.text)
buttons = [gr.Button(s, variant="secondary", visible=True) for s in suggestions]
buttons += [gr.Button(visible=False)] * (5 - len(buttons))
return gr.update(visible=False), *buttons
except Exception as e: return f"Could not generate suggestions: {e}", *[gr.update(visible=False)]*5
def handle_suggestion_click(question_text):
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question_text)
def add_plot_to_dashboard(state_dict, x_col, y_col, plot_type):
if not x_col:
gr.Warning("Please select at least an X-axis column.")
return state_dict, state_dict.get('dashboard_plots', [])
df = state_dict['df']
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}"
fig = None
try:
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols")
elif plot_type == 'bar':
counts = df[x_col].value_counts().nlargest(20)
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}")
fig.update_xaxes(title=x_col)
if fig:
fig.update_layout(template="plotly_dark")
state_dict['dashboard_plots'].append(fig)
return state_dict, state_dict['dashboard_plots']
except Exception as e:
gr.Warning(f"Plotting Error: {e}")
return state_dict, state_dict.get('dashboard_plots', [])
def clear_dashboard(state_dict):
state_dict['dashboard_plots'] = []
return state_dict, []
def respond_to_chat(user_message, history, state_dict, api_key):
if not api_key:
history.append((user_message, "I need a Gemini API key to function..."))
return history, *[gr.update(visible=False)] * 4
if not state_dict:
history.append((user_message, "Please upload a dataset first."))
return history, *[gr.update(visible=False)] * 4
history.append((user_message, None))
metadata = state_dict['metadata']
prompt = f"""
You are 'Phoenix Co-pilot', an expert AI data analyst... [Prompt remains the same]
**User Question:** "{user_message}"
**Your JSON Response:**
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
response_json = json.loads(response.text.strip().replace("```json", "").replace("```", ""))
thought = response_json.get("thought", "Thinking...")
code_to_run = response_json.get("code", "")
explanation = response_json.get("explanation", "Here is the result.")
stdout, fig_result, df_result, error = safe_exec(code_to_run, {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np})
history[-1] = (user_message, f"π€ **Thought:** *{thought}*")
output_updates = [gr.update(visible=False, value=None)] * 4
if explanation: output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** {explanation}")
if code_to_run: output_updates[1] = gr.update(visible=True, value=code_to_run)
if fig_result: output_updates[2] = gr.update(visible=True, value=fig_result)
if df_result is not None: output_updates[3] = gr.update(visible=True, value=df_result)
if stdout:
new_explanation = (output_updates[0]['value'] if output_updates[0]['visible'] else "") + f"\n\n**Console Output:**\n```\n{stdout}\n```"
output_updates[0] = gr.update(visible=True, value=new_explanation)
if error:
output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** I encountered an error. Here's the details:\n\n`{error}`")
return history, *output_updates
except Exception as e:
history[-1] = (user_message, f"A critical error occurred: {e}.")
return history, *[gr.update(visible=False)] * 4
# --- Gradio UI Definition ---
def create_gradio_interface():
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Phoenix AI Data Explorer") as demo:
global_state = gr.State({})
# --- CORRECTED: "Define-Then-Place" Pattern ---
# 1. DEFINE all interactive components first.
# Sidebar components
cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected")
deep_dive_btn = gr.Button("π Deep Dive Builder")
copilot_btn = gr.Button("π€ AI Co-pilot")
file_input = gr.File(label="π Upload New CSV", file_types=[".csv"])
status_output = gr.Markdown("Status: Awaiting data...")
api_key_input = gr.Textbox(label="π Gemini API Key", type="password", placeholder="Enter key here...")
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary")
# Cockpit page components
rows_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value", interactive=False)
cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value", interactive=False)
quality_stat = gr.Textbox("0%", show_label=False, elem_classes="stat-card-value", interactive=False)
time_cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value", interactive=False)
suggestion_status = gr.Markdown(visible=True)
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
# Deep Dive page components
plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
x_col_dd = gr.Dropdown([], label="X-Axis / Column")
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)")
add_plot_btn = gr.Button("Add to Dashboard", variant="primary")
clear_plots_btn = gr.Button("Clear Dashboard")
dashboard_gallery = gr.Gallery(label="π Your Custom Dashboard", height="auto", columns=2, preview=True)
# Co-pilot page components
chatbot = gr.Chatbot(height=400, label="Conversation with Co-pilot", show_copy_button=True)
copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
copilot_code = gr.Code(language="python", visible=False, label="Executed Python Code")
copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True)
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the correlation between age and salary?'", scale=4)
chat_submit_btn = gr.Button("Submit", variant="primary")
# 2. PLACE the defined components into the layout.
with gr.Row():
# Sidebar Layout
with gr.Column(scale=1, elem_classes="sidebar"):
gr.Markdown("## π Phoenix UI")
cockpit_btn
deep_dive_btn
copilot_btn
gr.Markdown("---")
file_input
status_output
gr.Markdown("---")
api_key_input
suggestion_btn
# Main Content Layout
with gr.Column(scale=4):
with gr.Column(visible=True) as welcome_page:
gr.Markdown("# Welcome to the AI Data Explorer (Phoenix UI)")
gr.Markdown("Please **upload a CSV file** and **enter your Gemini API key** in the sidebar to begin.")
gr.Image(value="workflow.png", show_label=False, show_download_button=False, container=False)
with gr.Column(visible=False) as cockpit_page:
gr.Markdown("## π Data Cockpit")
with gr.Row():
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Rows</div>"); rows_stat
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Columns</div>"); cols_stat
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); quality_stat
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); time_cols_stat
suggestion_status
with gr.Accordion(label="β¨ AI Smart Suggestions", open=True):
for btn in suggestion_buttons:
btn
with gr.Column(visible=False) as deep_dive_page:
gr.Markdown("## π Deep Dive Dashboard Builder")
gr.Markdown("Create a custom dashboard by adding multiple plots to the gallery below.")
with gr.Row():
plot_type_dd; x_col_dd; y_col_dd
with gr.Row():
add_plot_btn; clear_plots_btn
dashboard_gallery
with gr.Column(visible=False) as copilot_page:
gr.Markdown("## π€ AI Co-pilot")
chatbot
with gr.Accordion("Co-pilot's Response Details", open=True):
copilot_explanation; copilot_code; copilot_plot; copilot_table
with gr.Row():
chat_input; chat_submit_btn
# 3. DEFINE all event handlers. Now all component variables are guaranteed to exist.
pages = [cockpit_page, deep_dive_page, copilot_page]
nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn]
for i, btn in enumerate(nav_buttons):
page_name = btn.value.lower().replace(" ", "_").split(" ")[-1]
btn.click(lambda name=page_name: switch_page(name), outputs=pages) \
.then(lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)
file_input.upload(load_and_process_file, [file_input, global_state],
[global_state, status_output, welcome_page, cockpit_page, deep_dive_page, copilot_page,
rows_stat, cols_stat, quality_stat, time_cols_stat,
x_col_dd, y_col_dd, plot_type_dd]) \
.then(lambda: switch_page("cockpit"), outputs=pages) \
.then(lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
suggestion_btn.click(get_ai_suggestions, [global_state, api_key_input], [suggestion_status, *suggestion_buttons])
for btn in suggestion_buttons:
btn.click(handle_suggestion_click, inputs=[btn], outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input]) \
.then(lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
add_plot_btn.click(add_plot_to_dashboard, [global_state, x_col_dd, y_col_dd, plot_type_dd], [global_state, dashboard_gallery])
clear_plots_btn.click(clear_dashboard, [global_state], [global_state, dashboard_gallery])
chat_submit_btn.click(respond_to_chat, [chat_input, chatbot, global_state, api_key_input],
[chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]) \
.then(lambda: "", outputs=[chat_input])
chat_input.submit(respond_to_chat, [chat_input, chatbot, global_state, api_key_input],
[chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]) \
.then(lambda: "", outputs=[chat_input])
return demo
if __name__ == "__main__":
app = create_gradio_interface()
app.launch(debug=True) |