File size: 18,115 Bytes
1956035 c08faed 1956035 c08faed 1956035 f7b84f1 1956035 f7b84f1 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 f7b84f1 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 c08faed 1956035 f7b84f1 1956035 c08faed 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 f7b84f1 1956035 f7b84f1 1956035 c08faed 1956035 f7b84f1 1956035 f7b84f1 1956035 f7b84f1 1956035 c08faed 1956035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# Odyssey - The AI Data Science Workspace
# A demonstration of a state-of-the-art, AI-native analytic environment.
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import io, os, json, base64, logging, warnings, pickle, uuid
from contextlib import redirect_stdout
from datetime import datetime
# ML & Preprocessing Imports
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.metrics import roc_curve, auc, confusion_matrix, r2_score, mean_squared_error
from sklearn.preprocessing import LabelEncoder
from sklearn.impute import KNNImputer
# --- Configuration ---
warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- UI Theme & Icons ---
THEME = gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate").set(
body_background_fill="radial-gradient(circle, rgba(20,20,80,1) 0%, rgba(0,0,10,1) 100%);",
block_label_background_fill="rgba(255,255,255,0.05)",
block_background_fill="rgba(255,255,255,0.05)",
button_primary_background_fill="linear-gradient(90deg, #6A11CB 0%, #2575FC 100%)",
button_secondary_background_fill="linear-gradient(90deg, #556270 0%, #4ECDC4 100%)",
color_accent_soft="rgba(255,255,255,0.2)"
)
ICONS = {"overview": "π", "medic": "π§ͺ", "launchpad": "π", "copilot": "π‘", "export": "π"}
# --- Core State & Project Management ---
def init_state():
"""Initializes a blank global state."""
return {
"project_name": None,
"df_original": None,
"df_modified": None,
"metadata": None,
"insights": None,
"chat_history": [],
"dynamic_dashboards": {}
}
def save_project(state):
"""Saves the entire application state to a .osyssey file."""
if not state or not state.get("project_name"):
return gr.update(value="Project needs a name to save.", interactive=True)
filename = f"{state['project_name']}.odyssey"
# Convert dataframes to pickle strings for serialization
state_to_save = state.copy()
if state_to_save['df_original'] is not None:
state_to_save['df_original'] = state_to_save['df_original'].to_pickle()
if state_to_save['df_modified'] is not None:
state_to_save['df_modified'] = state_to_save['df_modified'].to_pickle()
with open(filename, "wb") as f:
pickle.dump(state_to_save, f)
return gr.update(value=f"Project saved to {filename}", interactive=True)
def load_project(file_obj):
"""Loads a .odyssey file into the application state."""
if not file_obj: return init_state()
with open(file_obj.name, "rb") as f:
loaded_state = pickle.load(f)
# Unpickle dataframes
if loaded_state['df_original'] is not None:
loaded_state['df_original'] = pd.read_pickle(io.BytesIO(loaded_state['df_original']))
if loaded_state['df_modified'] is not None:
loaded_state['df_modified'] = pd.read_pickle(io.BytesIO(loaded_state['df_modified']))
return loaded_state
def prime_data(file_obj, project_name):
"""Main function to load a new CSV, analyze it, and set the initial state."""
if not file_obj: return init_state()
df = pd.read_csv(file_obj.name)
# Smart type conversion
for col in df.select_dtypes(include=['object']).columns:
try:
df[col] = pd.to_datetime(df[col], errors='raise')
except (ValueError, TypeError):
if 0.5 > df[col].nunique() / len(df) > 0.0:
df[col] = df[col].astype('category')
metadata = extract_metadata(df)
insights = run_helios_engine(df, metadata)
return {
"project_name": project_name or f"Project_{datetime.now().strftime('%Y%m%d_%H%M')}",
"df_original": df,
"df_modified": df.copy(),
"metadata": metadata,
"insights": insights,
"chat_history": [],
"dynamic_dashboards": {}
}
def extract_metadata(df):
"""Utility to get schema and column types."""
return {
'shape': df.shape,
'columns': df.columns.tolist(),
'numeric': df.select_dtypes(include=np.number).columns.tolist(),
'categorical': df.select_dtypes(include=['object', 'category']).columns.tolist(),
'datetime': df.select_dtypes(include='datetime').columns.tolist(),
'dtypes': df.dtypes.apply(lambda x: x.name).to_dict()
}
# --- Helios Overview Engine ---
def run_helios_engine(df, metadata):
"""The proactive analysis engine."""
insights = {}
# Missing Data
missing = df.isnull().sum()
insights['missing_data'] = missing[missing > 0].sort_values(ascending=False)
# High Cardinality
insights['high_cardinality'] = {c: df[c].nunique() for c in metadata['categorical'] if df[c].nunique() > 50}
# Outlier Detection
outliers = {}
for col in metadata['numeric']:
Q1, Q3 = df[col].quantile(0.25), df[col].quantile(0.75)
IQR = Q3 - Q1
count = ((df[col] < (Q1 - 1.5 * IQR)) | (df[col] > (Q3 + 1.5 * IQR))).sum()
if count > 0: outliers[col] = count
insights['outliers'] = outliers
# ML Target Suggestions
suggestions = []
for col in metadata['categorical']:
if df[col].nunique() == 2: suggestions.append(f"{col} (Classification)")
for col in metadata['numeric']:
if df[col].nunique() > 20: suggestions.append(f"{col} (Regression)")
insights['ml_suggestions'] = suggestions
return insights
# --- Asclepius Data Lab Handlers ---
def medic_preview_imputation(state, col, num_method, cat_method):
if not col or col not in state['df_modified'].columns: return None
df_mod = state['df_modified'].copy()
if col in state['metadata']['numeric']:
if num_method == 'KNN':
imputer = KNNImputer(n_neighbors=5)
df_mod[col] = imputer.fit_transform(df_mod[[col]])
else:
value = df_mod[col].mean() if num_method == 'mean' else df_mod[col].median()
df_mod[col].fillna(value, inplace=True)
fig = go.Figure()
fig.add_trace(go.Histogram(x=state['df_original'][col], name='Original', opacity=0.7))
fig.add_trace(go.Histogram(x=df_mod[col], name='Imputed', opacity=0.7))
fig.update_layout(barmode='overlay', title_text=f"Distribution for '{col}'", legend_title_text='Dataset')
return fig
elif col in state['metadata']['categorical']:
if cat_method == "Create 'Missing' Category":
df_mod[col] = df_mod[col].cat.add_categories("Missing").fillna("Missing") if hasattr(df_mod[col], 'cat') else df_mod[col].fillna("Missing")
else: # Mode
df_mod[col].fillna(df_mod[col].mode()[0], inplace=True)
fig = go.Figure()
fig.add_trace(go.Bar(x=state['df_original'][col].value_counts().index, y=state['df_original'][col].value_counts().values, name='Original'))
fig.add_trace(go.Bar(x=df_mod[col].value_counts().index, y=df_mod[col].value_counts().values, name='Imputed'))
return fig
return None
# --- Prometheus Launchpad Handlers ---
def prometheus_run_model(state, target, features, model_name):
if not target or not features: return None, None, "Select target and features."
df = state['df_modified'].copy()
df.dropna(subset=[target] + features, inplace=True)
le_map = {}
for col in [target] + features:
if df[col].dtype.name in ['category', 'object']:
le = LabelEncoder()
df[col] = le.fit_transform(df[col])
le_map[col] = le
X, y = df[features], df[target]
problem_type = "Classification" if y.nunique() <= 10 else "Regression"
MODELS = {
"Classification": {"Random Forest": RandomForestClassifier, "Logistic Regression": LogisticRegression},
"Regression": {"Random Forest": RandomForestRegressor, "Linear Regression": LinearRegression}
}
if model_name not in MODELS[problem_type]: return None, None, "Invalid model for this problem type."
model = MODELS[problem_type][model_name](random_state=42)
if problem_type == "Classification":
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
report = f"**Cross-Validated Accuracy:** {np.mean(scores):.3f} Β± {np.std(scores):.3f}"
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model.fit(X_train, y_train)
# ROC Curve
y_prob = model.predict_proba(X_test)[:, 1]
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc_auc = auc(fpr, tpr)
fig1 = go.Figure(data=go.Scatter(x=fpr, y=tpr, mode='lines', name=f'ROC curve (area = {roc_auc:.2f})'))
fig1.add_scatter(x=[0, 1], y=[0, 1], mode='lines', line=dict(dash='dash'), name='Random Chance')
fig1.update_layout(title="ROC Curve")
# Feature Importance
if hasattr(model, 'feature_importances_'):
fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False)
fig2 = px.bar(fi, title="Feature Importance")
else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available for this model)")
return fig1, fig2, report
else: # Regression
scores = cross_val_score(model, X, y, cv=5, scoring='r2')
report = f"**Cross-Validated RΒ² Score:** {np.mean(scores):.3f} Β± {np.std(scores):.3f}"
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model.fit(X_train, y_train)
preds = model.predict(X_test)
# Residuals Plot
residuals = y_test - preds
fig1 = px.scatter(x=preds, y=residuals, title="Residuals vs. Predicted Plot", labels={'x': 'Predicted Values', 'y': 'Residuals'})
fig1.add_hline(y=0, line_dash="dash")
# Feature Importance
if hasattr(model, 'feature_importances_'):
fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False)
fig2 = px.bar(fi, title="Feature Importance")
else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available for this model)")
return fig1, fig2, report
# --- Athena Co-pilot Handlers ---
def athena_respond(user_message, history, state, api_key):
# Main co-pilot logic
pass # This would contain the full logic from previous examples
def render_dynamic_dashboard(state, dashboard_id):
"""Renders a dynamically generated dashboard from the state."""
# This is a placeholder for the advanced dashboard rendering logic.
# In a real scenario, this would execute the Gradio code string stored in state.
if dashboard_id in state['dynamic_dashboards']:
# This is where we would dynamically create the Gradio components
# For this example, we'll return a placeholder
return gr.Markdown(f"### Dashboard: {dashboard_id}\n(Dynamic rendering placeholder)")
return gr.Markdown("Dashboard not found.")
# --- UI Builder Functions ---
def build_ui():
with gr.Blocks(theme=THEME, title="Odyssey AI Data Workspace") as demo:
state = gr.State(init_state())
with gr.Row():
# Left Sidebar - Command Center
with gr.Column(scale=1):
gr.Markdown("# π¦ Odyssey")
with gr.Accordion("π Project", open=True):
project_name_input = gr.Textbox(label="Project Name", value="New_Project")
file_input = gr.File(label="Upload CSV", file_types=[".csv"])
with gr.Row():
save_btn = gr.Button("Save")
load_btn = gr.UploadButton("Load .odyssey")
project_status = gr.Markdown()
# Navigation buttons
overview_btn = gr.Button(f"{ICONS['overview']} Helios Overview")
medic_btn = gr.Button(f"{ICONS['medic']} Asclepius Data Lab")
launchpad_btn = gr.Button(f"{ICONS['launchpad']} Prometheus Launchpad")
copilot_btn = gr.Button(f"{ICONS['copilot']} Athena Co-pilot")
export_btn = gr.Button(f"{ICONS['export']} Export Report")
# Global Info
with gr.Accordion("Global Info", open=False):
file_info_md = gr.Markdown("No file loaded.")
# Right Panel - Main Workspace
with gr.Column(scale=4):
# --- Helios Overview Panel ---
with gr.Column(visible=True) as overview_panel:
gr.Markdown(f"# {ICONS['overview']} Helios Overview")
gr.Markdown("A proactive, high-level summary of your dataset.")
# Interactive dashboard components would go here
helios_report_md = gr.Markdown("Upload data to begin analysis.")
# --- Asclepius Data Lab Panel ---
with gr.Column(visible=False) as medic_panel:
gr.Markdown(f"# {ICONS['medic']} Asclepius Data Lab")
gr.Markdown("Interactively clean and prepare your data.")
# UI components for Data Medic
medic_col_select = gr.Dropdown(label="Select Column to Clean")
with gr.Row():
medic_num_method = gr.Radio(['mean', 'median', 'KNN'], label="Numeric Imputation", value='mean')
medic_cat_method = gr.Radio(['mode', "Create 'Missing' Category"], label="Categorical Imputation", value='mode')
medic_preview_plot = gr.Plot()
medic_apply_btn = gr.Button("Apply Changes to Session")
# --- Prometheus Launchpad Panel ---
with gr.Column(visible=False) as launchpad_panel:
gr.Markdown(f"# {ICONS['launchpad']} Prometheus Launchpad")
gr.Markdown("Train, evaluate, and understand predictive models.")
# UI components for Launchpad
with gr.Row():
lp_target = gr.Dropdown(label="π― Target")
lp_features = gr.Multiselect(label="β¨ Features")
lp_model = gr.Dropdown(choices=["Random Forest", "Logistic Regression", "Linear Regression"], label="π§ Model")
lp_run_btn = gr.Button("π Launch Model Training (with CV)")
lp_report_md = gr.Markdown()
with gr.Row():
lp_fig1 = gr.Plot()
lp_fig2 = gr.Plot()
# --- Athena Co-pilot Panel ---
with gr.Column(visible=False) as copilot_panel:
gr.Markdown(f"# {ICONS['copilot']} Athena Co-pilot")
gr.Markdown("Your collaborative AI data scientist. Ask anything.")
# Chatbot UI
chatbot = gr.Chatbot(height=500)
with gr.Accordion("AI Generated Dashboard", open=False) as dynamic_dash_accordion:
dynamic_dash_output = gr.Group() # Placeholder for dynamic content
chat_input = gr.Textbox(label="Your Request")
chat_submit = gr.Button("Send", variant="primary")
# --- Event Handling ---
# Panel Navigation
panels = [overview_panel, medic_panel, launchpad_panel, copilot_panel]
def switch_panel(btn_idx):
return [gr.update(visible=i == btn_idx) for i in range(len(panels))]
overview_btn.click(lambda: switch_panel(0), None, panels)
medic_btn.click(lambda: switch_panel(1), None, panels)
launchpad_btn.click(lambda: switch_panel(2), None, panels)
copilot_btn.click(lambda: switch_panel(3), None, panels)
# File Upload Logic
def on_upload(state, file, name):
new_state = prime_data(file, name)
# Update all UI components based on the new state
helios_md = "No data loaded."
if new_state.get('insights'):
helios_md = f"### {ICONS['ml_suggestions']} ML Suggestions\n" + "\n".join([f"- `{s}`" for s in new_state['insights']['ml_suggestions']])
# ... Add more sections for a full report
file_info = f"**File:** `{os.path.basename(file.name)}`\n\n**Shape:** `{new_state['metadata']['shape']}`"
all_cols = new_state['metadata']['columns']
missing_cols = new_state['insights']['missing_data'].index.tolist()
return new_state, helios_md, file_info, gr.update(choices=missing_cols), gr.update(choices=all_cols), gr.update(choices=all_cols)
file_input.upload(on_upload, [state, file_input, project_name_input], [state, helios_report_md, file_info_md, medic_col_select, lp_target, lp_features])
# Project Management
save_btn.click(save_project, state, project_status)
# Asclepius Live Preview
medic_col_select.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot)
medic_num_method.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot)
medic_cat_method.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot)
# Prometheus Model Training
lp_run_btn.click(prometheus_run_model, [state, lp_target, lp_features, lp_model], [lp_fig1, lp_fig2, lp_report_md])
return demo
# --- Main Execution ---
if __name__ == "__main__":
app = build_ui()
app.launch(debug=True) |