File size: 18,115 Bytes
1956035
 
 
c08faed
 
 
 
 
1956035
c08faed
1956035
 
 
 
f7b84f1
 
1956035
f7b84f1
1956035
c08faed
 
 
 
 
1956035
 
 
 
 
 
 
 
 
 
c08faed
1956035
 
 
c08faed
1956035
 
 
 
 
 
 
c08faed
 
1956035
 
 
 
c08faed
1956035
 
 
 
 
 
 
 
 
 
c08faed
1956035
f7b84f1
1956035
 
 
 
 
c08faed
1956035
 
 
 
 
 
 
c08faed
1956035
 
 
 
c08faed
1956035
 
 
 
 
 
 
c08faed
1956035
 
c08faed
1956035
 
 
 
 
 
 
 
 
f7b84f1
1956035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b84f1
 
1956035
 
 
 
 
 
 
 
 
 
 
 
 
f7b84f1
1956035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b84f1
1956035
f7b84f1
1956035
 
 
 
f7b84f1
1956035
f7b84f1
1956035
f7b84f1
 
1956035
 
 
 
 
c08faed
1956035
f7b84f1
 
1956035
 
 
 
 
c08faed
1956035
 
 
 
 
 
 
 
 
f7b84f1
 
1956035
 
f7b84f1
1956035
f7b84f1
1956035
 
 
 
 
 
f7b84f1
1956035
 
 
 
 
 
f7b84f1
 
1956035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c08faed
1956035
c08faed
1956035
 
 
 
c08faed
1956035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b84f1
1956035
f7b84f1
1956035
c08faed
1956035
 
 
 
 
 
 
f7b84f1
1956035
 
f7b84f1
1956035
f7b84f1
1956035
c08faed
1956035
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Odyssey - The AI Data Science Workspace
# A demonstration of a state-of-the-art, AI-native analytic environment.

import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import io, os, json, base64, logging, warnings, pickle, uuid
from contextlib import redirect_stdout
from datetime import datetime

# ML & Preprocessing Imports
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.metrics import roc_curve, auc, confusion_matrix, r2_score, mean_squared_error
from sklearn.preprocessing import LabelEncoder
from sklearn.impute import KNNImputer

# --- Configuration ---
warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# --- UI Theme & Icons ---
THEME = gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate").set(
    body_background_fill="radial-gradient(circle, rgba(20,20,80,1) 0%, rgba(0,0,10,1) 100%);",
    block_label_background_fill="rgba(255,255,255,0.05)",
    block_background_fill="rgba(255,255,255,0.05)",
    button_primary_background_fill="linear-gradient(90deg, #6A11CB 0%, #2575FC 100%)",
    button_secondary_background_fill="linear-gradient(90deg, #556270 0%, #4ECDC4 100%)",
    color_accent_soft="rgba(255,255,255,0.2)"
)
ICONS = {"overview": "πŸ”­", "medic": "πŸ§ͺ", "launchpad": "πŸš€", "copilot": "πŸ’‘", "export": "πŸ“„"}

# --- Core State & Project Management ---
def init_state():
    """Initializes a blank global state."""
    return {
        "project_name": None,
        "df_original": None,
        "df_modified": None,
        "metadata": None,
        "insights": None,
        "chat_history": [],
        "dynamic_dashboards": {}
    }

def save_project(state):
    """Saves the entire application state to a .osyssey file."""
    if not state or not state.get("project_name"):
        return gr.update(value="Project needs a name to save.", interactive=True)
    
    filename = f"{state['project_name']}.odyssey"
    # Convert dataframes to pickle strings for serialization
    state_to_save = state.copy()
    if state_to_save['df_original'] is not None:
        state_to_save['df_original'] = state_to_save['df_original'].to_pickle()
    if state_to_save['df_modified'] is not None:
        state_to_save['df_modified'] = state_to_save['df_modified'].to_pickle()

    with open(filename, "wb") as f:
        pickle.dump(state_to_save, f)
    
    return gr.update(value=f"Project saved to {filename}", interactive=True)

def load_project(file_obj):
    """Loads a .odyssey file into the application state."""
    if not file_obj: return init_state()
    with open(file_obj.name, "rb") as f:
        loaded_state = pickle.load(f)
    
    # Unpickle dataframes
    if loaded_state['df_original'] is not None:
        loaded_state['df_original'] = pd.read_pickle(io.BytesIO(loaded_state['df_original']))
    if loaded_state['df_modified'] is not None:
        loaded_state['df_modified'] = pd.read_pickle(io.BytesIO(loaded_state['df_modified']))
        
    return loaded_state

def prime_data(file_obj, project_name):
    """Main function to load a new CSV, analyze it, and set the initial state."""
    if not file_obj: return init_state()
    df = pd.read_csv(file_obj.name)
    
    # Smart type conversion
    for col in df.select_dtypes(include=['object']).columns:
        try:
            df[col] = pd.to_datetime(df[col], errors='raise')
        except (ValueError, TypeError):
            if 0.5 > df[col].nunique() / len(df) > 0.0:
                df[col] = df[col].astype('category')
    
    metadata = extract_metadata(df)
    insights = run_helios_engine(df, metadata)
    
    return {
        "project_name": project_name or f"Project_{datetime.now().strftime('%Y%m%d_%H%M')}",
        "df_original": df,
        "df_modified": df.copy(),
        "metadata": metadata,
        "insights": insights,
        "chat_history": [],
        "dynamic_dashboards": {}
    }

def extract_metadata(df):
    """Utility to get schema and column types."""
    return {
        'shape': df.shape,
        'columns': df.columns.tolist(),
        'numeric': df.select_dtypes(include=np.number).columns.tolist(),
        'categorical': df.select_dtypes(include=['object', 'category']).columns.tolist(),
        'datetime': df.select_dtypes(include='datetime').columns.tolist(),
        'dtypes': df.dtypes.apply(lambda x: x.name).to_dict()
    }

# --- Helios Overview Engine ---
def run_helios_engine(df, metadata):
    """The proactive analysis engine."""
    insights = {}
    # Missing Data
    missing = df.isnull().sum()
    insights['missing_data'] = missing[missing > 0].sort_values(ascending=False)
    # High Cardinality
    insights['high_cardinality'] = {c: df[c].nunique() for c in metadata['categorical'] if df[c].nunique() > 50}
    # Outlier Detection
    outliers = {}
    for col in metadata['numeric']:
        Q1, Q3 = df[col].quantile(0.25), df[col].quantile(0.75)
        IQR = Q3 - Q1
        count = ((df[col] < (Q1 - 1.5 * IQR)) | (df[col] > (Q3 + 1.5 * IQR))).sum()
        if count > 0: outliers[col] = count
    insights['outliers'] = outliers
    # ML Target Suggestions
    suggestions = []
    for col in metadata['categorical']:
        if df[col].nunique() == 2: suggestions.append(f"{col} (Classification)")
    for col in metadata['numeric']:
        if df[col].nunique() > 20: suggestions.append(f"{col} (Regression)")
    insights['ml_suggestions'] = suggestions
    return insights

# --- Asclepius Data Lab Handlers ---
def medic_preview_imputation(state, col, num_method, cat_method):
    if not col or col not in state['df_modified'].columns: return None
    df_mod = state['df_modified'].copy()
    
    if col in state['metadata']['numeric']:
        if num_method == 'KNN':
            imputer = KNNImputer(n_neighbors=5)
            df_mod[col] = imputer.fit_transform(df_mod[[col]])
        else:
            value = df_mod[col].mean() if num_method == 'mean' else df_mod[col].median()
            df_mod[col].fillna(value, inplace=True)
        
        fig = go.Figure()
        fig.add_trace(go.Histogram(x=state['df_original'][col], name='Original', opacity=0.7))
        fig.add_trace(go.Histogram(x=df_mod[col], name='Imputed', opacity=0.7))
        fig.update_layout(barmode='overlay', title_text=f"Distribution for '{col}'", legend_title_text='Dataset')
        return fig
    
    elif col in state['metadata']['categorical']:
        if cat_method == "Create 'Missing' Category":
            df_mod[col] = df_mod[col].cat.add_categories("Missing").fillna("Missing") if hasattr(df_mod[col], 'cat') else df_mod[col].fillna("Missing")
        else: # Mode
            df_mod[col].fillna(df_mod[col].mode()[0], inplace=True)
        
        fig = go.Figure()
        fig.add_trace(go.Bar(x=state['df_original'][col].value_counts().index, y=state['df_original'][col].value_counts().values, name='Original'))
        fig.add_trace(go.Bar(x=df_mod[col].value_counts().index, y=df_mod[col].value_counts().values, name='Imputed'))
        return fig
    return None

# --- Prometheus Launchpad Handlers ---
def prometheus_run_model(state, target, features, model_name):
    if not target or not features: return None, None, "Select target and features."
    df = state['df_modified'].copy()
    df.dropna(subset=[target] + features, inplace=True)
    
    le_map = {}
    for col in [target] + features:
        if df[col].dtype.name in ['category', 'object']:
            le = LabelEncoder()
            df[col] = le.fit_transform(df[col])
            le_map[col] = le
            
    X, y = df[features], df[target]
    problem_type = "Classification" if y.nunique() <= 10 else "Regression"
    
    MODELS = {
        "Classification": {"Random Forest": RandomForestClassifier, "Logistic Regression": LogisticRegression},
        "Regression": {"Random Forest": RandomForestRegressor, "Linear Regression": LinearRegression}
    }
    if model_name not in MODELS[problem_type]: return None, None, "Invalid model for this problem type."
    
    model = MODELS[problem_type][model_name](random_state=42)
    
    if problem_type == "Classification":
        scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
        report = f"**Cross-Validated Accuracy:** {np.mean(scores):.3f} Β± {np.std(scores):.3f}"
        
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
        model.fit(X_train, y_train)
        
        # ROC Curve
        y_prob = model.predict_proba(X_test)[:, 1]
        fpr, tpr, _ = roc_curve(y_test, y_prob)
        roc_auc = auc(fpr, tpr)
        fig1 = go.Figure(data=go.Scatter(x=fpr, y=tpr, mode='lines', name=f'ROC curve (area = {roc_auc:.2f})'))
        fig1.add_scatter(x=[0, 1], y=[0, 1], mode='lines', line=dict(dash='dash'), name='Random Chance')
        fig1.update_layout(title="ROC Curve")
        
        # Feature Importance
        if hasattr(model, 'feature_importances_'):
            fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False)
            fig2 = px.bar(fi, title="Feature Importance")
        else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available for this model)")
            
        return fig1, fig2, report
    else: # Regression
        scores = cross_val_score(model, X, y, cv=5, scoring='r2')
        report = f"**Cross-Validated RΒ² Score:** {np.mean(scores):.3f} Β± {np.std(scores):.3f}"
        
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
        model.fit(X_train, y_train)
        preds = model.predict(X_test)
        
        # Residuals Plot
        residuals = y_test - preds
        fig1 = px.scatter(x=preds, y=residuals, title="Residuals vs. Predicted Plot", labels={'x': 'Predicted Values', 'y': 'Residuals'})
        fig1.add_hline(y=0, line_dash="dash")
        
        # Feature Importance
        if hasattr(model, 'feature_importances_'):
            fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False)
            fig2 = px.bar(fi, title="Feature Importance")
        else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available for this model)")

        return fig1, fig2, report

# --- Athena Co-pilot Handlers ---
def athena_respond(user_message, history, state, api_key):
    # Main co-pilot logic
    pass # This would contain the full logic from previous examples

def render_dynamic_dashboard(state, dashboard_id):
    """Renders a dynamically generated dashboard from the state."""
    # This is a placeholder for the advanced dashboard rendering logic.
    # In a real scenario, this would execute the Gradio code string stored in state.
    if dashboard_id in state['dynamic_dashboards']:
        # This is where we would dynamically create the Gradio components
        # For this example, we'll return a placeholder
        return gr.Markdown(f"### Dashboard: {dashboard_id}\n(Dynamic rendering placeholder)")
    return gr.Markdown("Dashboard not found.")

# --- UI Builder Functions ---
def build_ui():
    with gr.Blocks(theme=THEME, title="Odyssey AI Data Workspace") as demo:
        state = gr.State(init_state())

        with gr.Row():
            # Left Sidebar - Command Center
            with gr.Column(scale=1):
                gr.Markdown("# πŸ¦‰ Odyssey")
                
                with gr.Accordion("πŸ“‚ Project", open=True):
                    project_name_input = gr.Textbox(label="Project Name", value="New_Project")
                    file_input = gr.File(label="Upload CSV", file_types=[".csv"])
                    with gr.Row():
                        save_btn = gr.Button("Save")
                        load_btn = gr.UploadButton("Load .odyssey")
                    project_status = gr.Markdown()
                
                # Navigation buttons
                overview_btn = gr.Button(f"{ICONS['overview']} Helios Overview")
                medic_btn = gr.Button(f"{ICONS['medic']} Asclepius Data Lab")
                launchpad_btn = gr.Button(f"{ICONS['launchpad']} Prometheus Launchpad")
                copilot_btn = gr.Button(f"{ICONS['copilot']} Athena Co-pilot")
                export_btn = gr.Button(f"{ICONS['export']} Export Report")

                # Global Info
                with gr.Accordion("Global Info", open=False):
                    file_info_md = gr.Markdown("No file loaded.")

            # Right Panel - Main Workspace
            with gr.Column(scale=4):
                # --- Helios Overview Panel ---
                with gr.Column(visible=True) as overview_panel:
                    gr.Markdown(f"# {ICONS['overview']} Helios Overview")
                    gr.Markdown("A proactive, high-level summary of your dataset.")
                    # Interactive dashboard components would go here
                    helios_report_md = gr.Markdown("Upload data to begin analysis.")
                
                # --- Asclepius Data Lab Panel ---
                with gr.Column(visible=False) as medic_panel:
                    gr.Markdown(f"# {ICONS['medic']} Asclepius Data Lab")
                    gr.Markdown("Interactively clean and prepare your data.")
                    # UI components for Data Medic
                    medic_col_select = gr.Dropdown(label="Select Column to Clean")
                    with gr.Row():
                        medic_num_method = gr.Radio(['mean', 'median', 'KNN'], label="Numeric Imputation", value='mean')
                        medic_cat_method = gr.Radio(['mode', "Create 'Missing' Category"], label="Categorical Imputation", value='mode')
                    medic_preview_plot = gr.Plot()
                    medic_apply_btn = gr.Button("Apply Changes to Session")

                # --- Prometheus Launchpad Panel ---
                with gr.Column(visible=False) as launchpad_panel:
                    gr.Markdown(f"# {ICONS['launchpad']} Prometheus Launchpad")
                    gr.Markdown("Train, evaluate, and understand predictive models.")
                    # UI components for Launchpad
                    with gr.Row():
                        lp_target = gr.Dropdown(label="🎯 Target")
                        lp_features = gr.Multiselect(label="✨ Features")
                        lp_model = gr.Dropdown(choices=["Random Forest", "Logistic Regression", "Linear Regression"], label="🧠 Model")
                    lp_run_btn = gr.Button("πŸš€ Launch Model Training (with CV)")
                    lp_report_md = gr.Markdown()
                    with gr.Row():
                        lp_fig1 = gr.Plot()
                        lp_fig2 = gr.Plot()
                
                # --- Athena Co-pilot Panel ---
                with gr.Column(visible=False) as copilot_panel:
                    gr.Markdown(f"# {ICONS['copilot']} Athena Co-pilot")
                    gr.Markdown("Your collaborative AI data scientist. Ask anything.")
                    # Chatbot UI
                    chatbot = gr.Chatbot(height=500)
                    with gr.Accordion("AI Generated Dashboard", open=False) as dynamic_dash_accordion:
                        dynamic_dash_output = gr.Group() # Placeholder for dynamic content
                    chat_input = gr.Textbox(label="Your Request")
                    chat_submit = gr.Button("Send", variant="primary")
        
        # --- Event Handling ---
        
        # Panel Navigation
        panels = [overview_panel, medic_panel, launchpad_panel, copilot_panel]
        def switch_panel(btn_idx):
            return [gr.update(visible=i == btn_idx) for i in range(len(panels))]
        
        overview_btn.click(lambda: switch_panel(0), None, panels)
        medic_btn.click(lambda: switch_panel(1), None, panels)
        launchpad_btn.click(lambda: switch_panel(2), None, panels)
        copilot_btn.click(lambda: switch_panel(3), None, panels)

        # File Upload Logic
        def on_upload(state, file, name):
            new_state = prime_data(file, name)
            # Update all UI components based on the new state
            helios_md = "No data loaded."
            if new_state.get('insights'):
                helios_md = f"### {ICONS['ml_suggestions']} ML Suggestions\n" + "\n".join([f"- `{s}`" for s in new_state['insights']['ml_suggestions']])
                # ... Add more sections for a full report
            
            file_info = f"**File:** `{os.path.basename(file.name)}`\n\n**Shape:** `{new_state['metadata']['shape']}`"
            
            all_cols = new_state['metadata']['columns']
            missing_cols = new_state['insights']['missing_data'].index.tolist()

            return new_state, helios_md, file_info, gr.update(choices=missing_cols), gr.update(choices=all_cols), gr.update(choices=all_cols)

        file_input.upload(on_upload, [state, file_input, project_name_input], [state, helios_report_md, file_info_md, medic_col_select, lp_target, lp_features])
        
        # Project Management
        save_btn.click(save_project, state, project_status)
        
        # Asclepius Live Preview
        medic_col_select.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot)
        medic_num_method.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot)
        medic_cat_method.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot)

        # Prometheus Model Training
        lp_run_btn.click(prometheus_run_model, [state, lp_target, lp_features, lp_model], [lp_fig1, lp_fig2, lp_report_md])

        return demo

# --- Main Execution ---
if __name__ == "__main__":
    app = build_ui()
    app.launch(debug=True)