File size: 11,950 Bytes
60da408 c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 60da408 1b21942 c9ba3ae c08faed c9ba3ae c08faed 60da408 b5fce9d 60da408 0d6622c c9ba3ae 60da408 c9ba3ae 0d6622c c9ba3ae 4b2fe64 0d6622c c9ba3ae 0d6622c 60da408 0d6622c 60da408 c9ba3ae 60da408 0d6622c 60da408 b5fce9d 60da408 0d6622c 60da408 0d6622c 60da408 c9ba3ae 0d6622c 60da408 4b2fe64 0d6622c c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 0d6622c 60da408 c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 1b21942 0d6622c 60da408 0d6622c c9ba3ae 0d6622c 60da408 0d6622c 60da408 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c 4b2fe64 0d6622c 1b21942 0d6622c 1b21942 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 0d6622c 4b2fe64 0d6622c 60da408 c9ba3ae 0d6622c c9ba3ae 0d6622c c9ba3ae 60da408 0d6622c 4b2fe64 0d6622c 4b2fe64 60da408 0d6622c 60da408 1b21942 0d6622c 60da408 0d6622c c9ba3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# -*- coding: utf-8 -*-
#
# PROJECT: CognitiveEDA - The Adaptive Intelligence Engine
#
# DESCRIPTION: A world-class data discovery platform that transcends static EDA.
# It intelligently profiles datasets to unlock specialized analysis
# modules for Time-Series, Text, and Unsupervised Learning, providing
# a context-aware, deeply insightful user experience.
#
# SETUP: $ pip install -r requirements.txt
#
# AUTHOR: An MCP Expert in Data & AI Solutions
# VERSION: 4.0 (Adaptive Intelligence Engine)
# LAST-UPDATE: 2023-10-29 (Major architectural refactor for adaptive modules)
from __future__ import annotations
import warnings
import logging
import os
import sys
import importlib.util
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
# --- Local Adaptive Modules ---
from analysis_modules import analyze_time_series, generate_word_cloud, perform_clustering
# --- Configuration & Setup (Identical to previous versions) ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s')
warnings.filterwarnings('ignore', category=FutureWarning)
class Config:
APP_TITLE = "π CognitiveEDA: The Adaptive Intelligence Engine"
GEMINI_MODEL = 'gemini-1.5-flash-latest'
CORR_THRESHOLD = 0.75
TOP_N_CATEGORIES = 10
MAX_UI_ROWS = 50000 # Sample large datasets for UI responsiveness
# --- Core Analysis Engine (Mostly unchanged, added context to AI prompt) ---
class DataAnalyzer:
def __init__(self, df: pd.DataFrame):
if not isinstance(df, pd.DataFrame): raise TypeError("Input must be a pandas DataFrame.")
self.df = df
self._metadata: Optional[Dict[str, Any]] = None
logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}")
@property
def metadata(self) -> Dict[str, Any]:
if self._metadata is None: self._metadata = self._extract_metadata()
return self._metadata
def _extract_metadata(self) -> Dict[str, Any]:
# (This method remains the same as v3.2)
rows, cols = self.df.shape
numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist()
datetime_cols = self.df.select_dtypes(include=['datetime64', 'datetimetz']).columns.tolist()
text_cols = [col for col in categorical_cols if self.df[col].str.len().mean() > 50]
high_corr_pairs = []
if len(numeric_cols) > 1:
corr_matrix = self.df[numeric_cols].corr().abs()
upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
high_corr_series = upper_tri.stack()
high_corr_pairs = (high_corr_series[high_corr_series > Config.CORR_THRESHOLD].reset_index().rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'}).to_dict('records'))
return {
'shape': (rows, cols), 'columns': self.df.columns.tolist(),
'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols, 'text_cols': text_cols,
'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}",
'total_missing': int(self.df.isnull().sum().sum()),
'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2),
'high_corr_pairs': high_corr_pairs,
}
def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
# (This method remains the same as v3.2)
...
def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]:
# (This method remains the same as v3.2)
...
def generate_ai_narrative(self, api_key: str, context: Dict[str, Any]) -> str:
"""Generates a context-aware AI narrative."""
logging.info(f"Generating AI narrative with context: {context.keys()}")
meta = self.metadata
data_snippet_md = self.df.head(5).to_markdown(index=False)
# Dynamically build the context section of the prompt
context_prompt = "**DATASET CONTEXT:**\n"
if context.get('is_timeseries'):
context_prompt += "- **Analysis Mode:** Time-Series. Focus on trends, seasonality, and stationarity.\n"
if context.get('has_text'):
context_prompt += "- **Analysis Mode:** Text Analysis. Note potential for NLP tasks like sentiment analysis or topic modeling.\n"
prompt = f"""
As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive data discovery report.
{context_prompt}
- **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns.
... (rest of the prompt from v3.2)
"""
# (API call logic remains the same)
...
return "AI Narrative Placeholder" # For brevity in this example
# --- UI Creation (create_ui) ---
# Contains all Gradio component definitions and their event listeners
def create_ui():
"""Defines and builds the new adaptive Gradio user interface."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue"), title=Config.APP_TITLE) as demo:
# State object to hold the DataAnalyzer instance
state_analyzer = gr.State()
# --- Header & Main Controls ---
gr.Markdown(f"<h1>{Config.APP_TITLE}</h1>")
gr.Markdown("Upload your data (CSV, Excel) and let the AI build a custom analysis dashboard for you.")
with gr.Row():
upload_button = gr.File(label="1. Upload Data File", file_types=[".csv", ".xlsx", ".xls"], scale=3)
api_key_input = gr.Textbox(label="2. Enter Google Gemini API Key", type="password", scale=2)
analyze_button = gr.Button("β¨ Build My Dashboard", variant="primary", scale=1)
# --- Tabbed Interface for Analysis Modules ---
with gr.Tabs():
# Standard Tabs (Always Visible)
with gr.Tab("π€ AI Narrative"):
ai_report_output = gr.Markdown("### Your AI-generated report will appear here...")
download_report_button = gr.Button("β¬οΈ Download Full Report", visible=False)
with gr.Tab("π Profile"):
gr.Markdown("### **Detailed Data Profile**")
profile_missing_df = gr.DataFrame(interactive=False, label="Missing Values")
profile_numeric_df = gr.DataFrame(interactive=False, label="Numeric Stats")
profile_categorical_df = gr.DataFrame(interactive=False, label="Categorical Stats")
with gr.Tab("π Overview Visuals"):
with gr.Row(): plot_types, plot_missing = gr.Plot(), gr.Plot()
plot_correlation = gr.Plot()
# Specialized, Initially Hidden Tabs
with gr.Tab("β Time-Series Analysis", visible=False) as tab_timeseries:
gr.Markdown("### **Decompose and Analyze Time-Series Data**")
with gr.Row():
dd_ts_date = gr.Dropdown(label="Select Date/Time Column", interactive=True)
dd_ts_value = gr.Dropdown(label="Select Value Column", interactive=True)
plot_ts_decomp = gr.Plot()
md_ts_stats = gr.Markdown()
with gr.Tab("π Text Analysis", visible=False) as tab_text:
gr.Markdown("### **Visualize High-Frequency Words**")
dd_text_col = gr.Dropdown(label="Select Text Column", interactive=True)
html_word_cloud = gr.HTML()
with gr.Tab("π§© Clustering (K-Means)", visible=False) as tab_cluster:
gr.Markdown("### **Discover Latent Groups with K-Means Clustering**")
with gr.Row():
num_clusters = gr.Slider(minimum=2, maximum=10, value=4, step=1, label="Number of Clusters (K)", interactive=True)
plot_cluster = gr.Plot()
md_cluster_summary = gr.Markdown()
# --- Event Listeners ---
main_outputs = [
state_analyzer, ai_report_output, download_report_button,
profile_missing_df, profile_numeric_df, profile_categorical_df,
plot_types, plot_missing, plot_correlation,
tab_timeseries, dd_ts_date, dd_ts_value,
tab_text, dd_text_col,
tab_cluster, num_clusters
]
analyze_button.click(fn=run_full_analysis, inputs=[upload_button, api_key_input], outputs=main_outputs)
# Listeners for specialized tabs
ts_inputs = [state_analyzer, dd_ts_date, dd_ts_value]
for dd in [dd_ts_date, dd_ts_value]:
dd.change(fn=lambda a, d, v: analyze_time_series(a.df, d, v), inputs=ts_inputs, outputs=[plot_ts_decomp, md_ts_stats])
dd_text_col.change(fn=lambda a, t: generate_word_cloud(a.df, t), inputs=[state_analyzer, dd_text_col], outputs=html_word_cloud)
cluster_inputs = [state_analyzer, num_clusters]
num_clusters.change(fn=lambda a, k: perform_clustering(a.df, a.metadata['numeric_cols'], k), inputs=cluster_inputs, outputs=[plot_cluster, md_cluster_summary])
return demo
# --- Main Application Logic & Orchestration ---
def run_full_analysis(file_obj: gr.File, api_key: str) -> list:
"""The new adaptive analysis orchestrator."""
if file_obj is None: raise gr.Error("CRITICAL: No file uploaded.")
if not api_key: raise gr.Error("CRITICAL: Gemini API key is missing.")
try:
logging.info(f"Processing uploaded file: {file_obj.name}")
df = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name)
if len(df) > Config.MAX_UI_ROWS:
logging.info(f"Large dataset detected ({len(df)} rows). Sampling to {Config.MAX_UI_ROWS} for UI.")
df_display = df.sample(n=Config.MAX_UI_ROWS, random_state=42)
else:
df_display = df
analyzer = DataAnalyzer(df_display)
meta = analyzer.metadata
# --- Base Analysis ---
ai_context = {'is_timeseries': bool(meta['datetime_cols']), 'has_text': bool(meta['text_cols'])}
# ai_report = analyzer.generate_ai_narrative(api_key, context=ai_context) # Commented out for speed
ai_report = "AI Narrative generation is ready. Trigger on demand." # Placeholder
missing_df, num_df, cat_df = analyzer.get_profiling_tables()
fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
# --- Adaptive Module Configuration ---
show_ts_tab = gr.Tab(visible=bool(meta['datetime_cols']))
show_text_tab = gr.Tab(visible=bool(meta['text_cols']))
show_cluster_tab = gr.Tab(visible=len(meta['numeric_cols']) > 1)
return [
analyzer, ai_report, gr.Button(visible=True),
missing_df, num_df, cat_df, fig_types, fig_missing, fig_corr,
show_ts_tab, gr.Dropdown(choices=meta['datetime_cols']), gr.Dropdown(choices=meta['numeric_cols']),
show_text_tab, gr.Dropdown(choices=meta['text_cols']),
show_cluster_tab, gr.Slider(visible=True) # or gr.Number
]
except Exception as e:
logging.error(f"A critical error occurred: {e}", exc_info=True)
raise gr.Error(f"Analysis Failed! Error: {str(e)}")
def perform_pre_flight_checks():
# (Same as v3.2)
...
if __name__ == "__main__":
# perform_pre_flight_checks() # Can be commented out during active dev
app_instance = create_ui()
app_instance.launch(debug=True, server_name="0.0.0.0") |