File size: 16,915 Bytes
1956035 5bd4d74 1956035 c08faed 5bd4d74 c08faed 1956035 f7b84f1 1956035 f7b84f1 1956035 c08faed 5bd4d74 c08faed 1956035 5bd4d74 1956035 c08faed 5bd4d74 1956035 5bd4d74 c08faed 5bd4d74 c08faed 1956035 5bd4d74 1956035 c08faed 1956035 5bd4d74 f7b84f1 1956035 5bd4d74 c08faed 1956035 c08faed 1956035 c08faed 1956035 c08faed 1956035 5bd4d74 1956035 f7b84f1 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 f7b84f1 1956035 f7b84f1 1956035 5bd4d74 f7b84f1 1956035 f7b84f1 5bd4d74 1956035 c08faed 1956035 f7b84f1 1956035 5bd4d74 1956035 f7b84f1 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 c08faed 1956035 5bd4d74 1956035 c08faed 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 1956035 5bd4d74 f7b84f1 5bd4d74 1956035 5bd4d74 f7b84f1 1956035 f7b84f1 1956035 c08faed 1956035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Odyssey - The AI Data Science Workspace
# A state-of-the-art, AI-native analytic environment.
# This script is a complete, self-contained Gradio application.
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import io, os, json, pickle, logging, warnings, uuid
from contextlib import redirect_stdout
from datetime import datetime
# ML & Preprocessing Imports
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.metrics import roc_curve, auc, confusion_matrix, r2_score, mean_squared_error
from sklearn.preprocessing import LabelEncoder
from sklearn.impute import KNNImputer
# Optional: For AI features
try:
import google.generativeai as genai
except ImportError:
print("Warning: 'google-generativeai' not found. AI features will be disabled.")
genai = None
# --- Configuration ---
warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- UI Theme & Icons ---
THEME = gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate").set(
body_background_fill="radial-gradient(circle, rgba(10,20,50,1) 0%, rgba(0,0,10,1) 100%);",
block_label_background_fill="rgba(255,255,255,0.05)",
block_background_fill="rgba(255,255,255,0.05)",
button_primary_background_fill="linear-gradient(90deg, #6A11CB 0%, #2575FC 100%)",
button_secondary_background_fill="linear-gradient(90deg, #556270 0%, #4ECDC4 100%)",
color_accent_soft="rgba(255,255,255,0.2)"
)
ICONS = {"overview": "๐ญ", "medic": "๐งช", "launchpad": "๐", "copilot": "๐ก", "export": "๐"}
# --- Helper Functions ---
def safe_exec(code_string: str, local_vars: dict) -> tuple:
"""Safely execute a string of Python code and capture its output."""
output_buffer = io.StringIO()
try:
with redirect_stdout(output_buffer):
exec(code_string, globals(), local_vars)
stdout = output_buffer.getvalue()
fig = local_vars.get('fig')
df_out = local_vars.get('df_result')
return stdout, fig, df_out, None
except Exception as e:
return None, None, None, f"Execution Error: {str(e)}"
# --- Core State & Project Management ---
def init_state():
"""Initializes a blank global state dictionary."""
return {
"project_name": None, "df_original": None, "df_modified": None,
"metadata": None, "insights": None, "chat_history": []
}
def save_project(state):
"""Saves the entire application state to a .odyssey file."""
if not state or not state.get("project_name"):
return gr.update(value="Project needs a name to save.", interactive=True)
filename = f"{state['project_name']}.odyssey"
with open(filename, "wb") as f:
pickle.dump(state, f)
return gr.update(value=f"โ
Project saved to {filename}", interactive=True)
def load_project(file_obj):
"""Loads a .odyssey file into the application state."""
if not file_obj: return init_state()
with open(file_obj.name, "rb") as f:
return pickle.load(f)
def prime_data(file_obj, project_name):
"""Main function to load a new CSV, analyze it, and set the initial state."""
if not file_obj: return init_state()
df = pd.read_csv(file_obj.name)
for col in df.select_dtypes(include=['object']).columns:
try:
df[col] = pd.to_datetime(df[col], errors='raise')
except (ValueError, TypeError):
if 0.5 > df[col].nunique() / len(df) > 0.0:
df[col] = df[col].astype('category')
metadata = extract_metadata(df)
insights = run_helios_engine(df, metadata)
return {
"project_name": project_name or f"Project_{datetime.now().strftime('%Y%m%d_%H%M')}",
"df_original": df, "df_modified": df.copy(), "metadata": metadata,
"insights": insights, "chat_history": []
}
def extract_metadata(df):
"""Utility to get schema and column types."""
return {
'shape': df.shape, 'columns': df.columns.tolist(),
'numeric': df.select_dtypes(include=np.number).columns.tolist(),
'categorical': df.select_dtypes(include=['object', 'category']).columns.tolist(),
'datetime': df.select_dtypes(include='datetime').columns.tolist(),
'dtypes': df.dtypes.apply(lambda x: x.name).to_dict()
}
# --- Module-Specific Handlers ---
def run_helios_engine(df, metadata):
"""The proactive analysis engine for the Helios Overview."""
insights = {}
missing = df.isnull().sum()
insights['missing_data'] = missing[missing > 0].sort_values(ascending=False)
insights['high_cardinality'] = {c: df[c].nunique() for c in metadata['categorical'] if df[c].nunique() > 50}
outliers = {}
for col in metadata['numeric']:
Q1, Q3 = df[col].quantile(0.25), df[col].quantile(0.75)
IQR = Q3 - Q1
count = ((df[col] < (Q1 - 1.5 * IQR)) | (df[col] > (Q3 + 1.5 * IQR))).sum()
if count > 0: outliers[col] = count
insights['outliers'] = outliers
suggestions = []
for col in metadata['categorical']:
if df[col].nunique() == 2: suggestions.append(f"{col} (Classification)")
for col in metadata['numeric']:
if df[col].nunique() > 20: suggestions.append(f"{col} (Regression)")
insights['ml_suggestions'] = suggestions
return insights
def prometheus_run_model(state, target, features, model_name):
"""Trains and evaluates a model in the Prometheus Launchpad."""
if not target or not features: return None, None, "Select target and features."
df = state['df_modified'].copy()
df.dropna(subset=[target] + features, inplace=True)
for col in [target] + features:
if df[col].dtype.name in ['category', 'object']:
df[col] = LabelEncoder().fit_transform(df[col])
X, y = df[features], df[target]
problem_type = "Classification" if y.nunique() <= 10 else "Regression"
MODELS = {"Classification": {"Random Forest": RandomForestClassifier, "Logistic Regression": LogisticRegression},
"Regression": {"Random Forest": RandomForestRegressor, "Linear Regression": LinearRegression}}
if model_name not in MODELS[problem_type]: return None, None, "Invalid model for this problem type."
model = MODELS[problem_type][model_name](random_state=42)
if problem_type == "Classification":
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
report = f"**Cross-Validated Accuracy:** {np.mean(scores):.3f} ยฑ {np.std(scores):.3f}"
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model.fit(X_train, y_train)
y_prob = model.predict_proba(X_test)[:, 1]
fpr, tpr, _ = roc_curve(y_test, y_prob)
fig1 = go.Figure(data=go.Scatter(x=fpr, y=tpr, mode='lines', name=f'ROC (AUC = {auc(fpr, tpr):.2f})'))
fig1.add_scatter(x=[0, 1], y=[0, 1], mode='lines', line=dict(dash='dash'), name='Random')
fig1.update_layout(title="ROC Curve")
else: # Regression
scores = cross_val_score(model, X, y, cv=5, scoring='r2')
report = f"**Cross-Validated Rยฒ Score:** {np.mean(scores):.3f} ยฑ {np.std(scores):.3f}"
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model.fit(X_train, y_train)
preds = model.predict(X_test)
residuals = y_test - preds
fig1 = px.scatter(x=preds, y=residuals, title="Residuals vs. Predicted", labels={'x': 'Predicted', 'y': 'Residuals'})
fig1.add_hline(y=0, line_dash="dash")
if hasattr(model, 'feature_importances_'):
fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False)
fig2 = px.bar(fi, title="Feature Importance")
else:
fig2 = go.Figure().update_layout(title="Feature Importance (Not available)")
return fig1, fig2, report
def athena_respond(user_message, history, state, api_key):
"""Handles the chat interaction with the AI Co-pilot."""
if not genai:
history.append((user_message, "Google AI library not installed. Cannot use Athena."))
return history, None, None, state
if not api_key:
history.append((user_message, "Please enter your Gemini API key to use Athena."))
return history, None, None, state
history.append((user_message, None))
# Configure the API
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
prompt = f"""
You are 'Athena', an AI data scientist. Your goal is to help a user by writing and executing Python code on a pandas DataFrame named `df`.
**DataFrame Info:**
{state['df_modified'].info(verbose=False)}
**Instructions:**
1. Analyze the user's request: '{user_message}'.
2. Formulate a plan (thought).
3. Write Python code to execute the plan. You can use `pandas as pd`, `numpy as np`, and `plotly.express as px`.
4. To show a plot, assign it to a variable `fig`.
5. To show a dataframe, assign it to a variable `df_result`.
6. Use `print()` for text output.
7. **NEVER** modify `df` in place.
8. Respond **ONLY** with a single, valid JSON object with keys "thought" and "code".
**Your JSON Response:**
"""
try:
response = model.generate_content(prompt)
response_json = json.loads(response.text.strip().replace("```json", "").replace("```", ""))
thought = response_json.get("thought", "Thinking...")
code_to_run = response_json.get("code", "print('No code generated.')")
bot_thinking = f"๐ง **Thinking:** *{thought}*"
history[-1] = (user_message, bot_thinking)
yield history, None, None, state
local_vars = {'df': state['df_modified'], 'px': px, 'pd': pd, 'np': np}
stdout, fig_result, df_result, error = safe_exec(code_to_run, local_vars)
bot_response = bot_thinking + "\n\n---\n\n"
if error: bot_response += f"๐ฅ **Error:**\n```\n{error}\n```"
if stdout: bot_response += f"๐ **Output:**\n```\n{stdout}\n```"
if not error and not stdout and not fig_result and not isinstance(df_result, pd.DataFrame):
bot_response += "โ
Code executed, but produced no direct output."
history[-1] = (user_message, bot_response)
state['chat_history'] = history # Persist chat history
yield history, fig_result, df_result, state
except Exception as e:
error_msg = f"A critical error occurred with the AI model: {e}"
history[-1] = (user_message, error_msg)
yield history, None, None, state
# --- UI Builder ---
def build_ui():
"""Constructs the entire Gradio application interface."""
with gr.Blocks(theme=THEME, title="Odyssey AI Data Workspace") as demo:
state = gr.State(init_state())
with gr.Row():
# Left Sidebar - Command Center
with gr.Column(scale=1):
gr.Markdown("# ๐ฆ Odyssey")
with gr.Accordion("๐ Project", open=True):
project_name_input = gr.Textbox(label="Project Name", value="New_Project")
file_input = gr.File(label="Upload CSV", file_types=[".csv"])
api_key_input = gr.Textbox(label="๐ Gemini API Key", type="password", placeholder="Enter key...")
with gr.Row():
save_btn = gr.Button("Save")
load_btn = gr.UploadButton("Load .odyssey")
project_status = gr.Markdown()
# Navigation buttons
overview_btn = gr.Button(f"{ICONS['overview']} Helios Overview")
launchpad_btn = gr.Button(f"{ICONS['launchpad']} Prometheus Launchpad")
copilot_btn = gr.Button(f"{ICONS['copilot']} Athena Co-pilot")
export_btn = gr.Button(f"{ICONS['export']} Export Report", visible=False)
# Right Panel - Main Workspace
with gr.Column(scale=4):
# --- Helios Overview Panel ---
with gr.Column(visible=True) as overview_panel:
gr.Markdown(f"# {ICONS['overview']} Helios Overview")
helios_report_md = gr.Markdown("Upload a CSV and provide a project name to begin your Odyssey.")
# --- Prometheus Launchpad Panel ---
with gr.Column(visible=False) as launchpad_panel:
gr.Markdown(f"# {ICONS['launchpad']} Prometheus Launchpad")
with gr.Row():
lp_target = gr.Dropdown(label="๐ฏ Target")
# CORRECTED LINE: Use gr.Dropdown with multiselect=True
lp_features = gr.Dropdown(label="โจ Features", multiselect=True)
lp_model = gr.Dropdown(choices=["Random Forest", "Logistic Regression", "Linear Regression"], label="๐ง Model")
lp_run_btn = gr.Button("๐ Launch Model Training (with CV)")
lp_report_md = gr.Markdown()
with gr.Row():
lp_fig1 = gr.Plot()
lp_fig2 = gr.Plot()
# --- Athena Co-pilot Panel ---
with gr.Column(visible=False) as copilot_panel:
gr.Markdown(f"# {ICONS['copilot']} Athena Co-pilot")
chatbot = gr.Chatbot(height=500, label="Chat History")
with gr.Accordion("AI Generated Results", open=True):
copilot_fig_output = gr.Plot()
copilot_df_output = gr.DataFrame(interactive=False)
chat_input = gr.Textbox(label="Your Request", placeholder="e.g., 'What's the correlation between all numeric columns?'")
chat_submit = gr.Button("Send", variant="primary")
# --- Event Handling ---
panels = [overview_panel, launchpad_panel, copilot_panel]
def switch_panel(btn_idx):
return [gr.update(visible=i == btn_idx) for i in range(len(panels))]
overview_btn.click(lambda: switch_panel(0), None, panels)
launchpad_btn.click(lambda: switch_panel(1), None, panels)
copilot_btn.click(lambda: switch_panel(2), None, panels)
def on_upload_or_load(state_data):
"""Unified function to update UI after data is loaded or a project is loaded."""
helios_md = "No data loaded."
if state_data and state_data.get('insights'):
insights = state_data['insights']
md = f"## ๐ญ Proactive Insights for `{state_data.get('project_name')}`\n"
md += f"Dataset has **{state_data['metadata']['shape'][0]} rows** and **{state_data['metadata']['shape'][1]} columns**.\n\n"
if suggestions := insights.get('ml_suggestions'):
md += "### ๐ฎ Potential ML Targets\n" + "\n".join(f"- `{s}`" for s in suggestions) + "\n"
if not insights.get('missing_data', pd.Series()).empty:
md += "\n### ๐ง Missing Data\nFound missing values in these columns:\n" + insights['missing_data'].to_frame('Missing Count').to_markdown() + "\n"
helios_md = md
all_cols = state_data.get('metadata', {}).get('columns', [])
return {
state: state_data,
helios_report_md: helios_md,
lp_target: gr.update(choices=all_cols),
lp_features: gr.update(choices=all_cols),
chatbot: state_data.get('chat_history', [])
}
file_input.upload(prime_data, [file_input, project_name_input], state).then(
on_upload_or_load, state, [state, helios_report_md, lp_target, lp_features, chatbot]
)
load_btn.upload(load_project, load_btn, state).then(
on_upload_or_load, state, [state, helios_report_md, lp_target, lp_features, chatbot]
)
save_btn.click(save_project, state, project_status)
lp_run_btn.click(prometheus_run_model, [state, lp_target, lp_features, lp_model], [lp_fig1, lp_fig2, lp_report_md])
chat_submit.click(
athena_respond,
[chat_input, chatbot, state, api_key_input],
[chatbot, copilot_fig_output, copilot_df_output, state]
).then(lambda: "", outputs=chat_input)
return demo
# --- Main Execution ---
if __name__ == "__main__":
app = build_ui()
app.launch(debug=True) |