File size: 21,072 Bytes
c08faed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import io
from scipy import stats
import warnings
import google.generativeai as genai
import os
from dotenv import load_dotenv
import logging
import json
from contextlib import redirect_stdout
# --- Configuration ---
warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Helper Functions ---
def safe_exec(code_string: str, local_vars: dict) -> tuple:
"""Safely execute a string of Python code and capture its output."""
output_buffer = io.StringIO()
try:
with redirect_stdout(output_buffer):
exec(code_string, globals(), local_vars)
stdout_output = output_buffer.getvalue()
fig = local_vars.get('fig', None)
return stdout_output, fig, None
except Exception as e:
error_message = f"Execution Error: {str(e)}"
logging.error(f"Error executing AI-generated code: {error_message}")
return None, None, error_message
# --- Core Data Processing ---
def load_and_process_file(file_obj, state_dict):
"""Loads a CSV file and performs initial processing, updating the global state."""
if file_obj is None:
return None, "Please upload a file.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
try:
df = pd.read_csv(file_obj.name)
# Attempt to convert object columns to datetime
for col in df.select_dtypes(include=['object']).columns:
try:
df[col] = pd.to_datetime(df[col], errors='raise')
logging.info(f"Successfully converted column '{col}' to datetime.")
except (ValueError, TypeError):
continue
metadata = extract_dataset_metadata(df)
state_dict = {
'df': df,
'metadata': metadata,
'filename': os.path.basename(file_obj.name)
}
# Update UI elements dynamically
update_args = {
'choices': metadata['columns'],
'value': None,
'interactive': True
}
# Check for time series tab visibility
time_series_visible = len(metadata['datetime_cols']) > 0
return (
state_dict,
f"β
Loaded `{state_dict['filename']}` ({metadata['shape'][0]} rows, {metadata['shape'][1]} cols)",
gr.update(**update_args), gr.update(**update_args), gr.update(**update_args),
gr.update(choices=metadata['numeric_cols'], value=None, interactive=True),
gr.update(choices=metadata['datetime_cols'], value=None, interactive=True),
gr.update(visible=time_series_visible), # Show/hide Time Series tab
gr.update(visible=True) # Show Chatbot tab
)
except Exception as e:
logging.error(f"Error loading file: {e}")
return state_dict, f"β Error: {e}", gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=False), gr.update(visible=False)
def extract_dataset_metadata(df: pd.DataFrame) -> dict:
"""Extracts comprehensive metadata from a DataFrame."""
rows, cols = df.shape
columns = df.columns.tolist()
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist()
missing_data = df.isnull().sum()
data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
return {
'shape': (rows, cols),
'columns': columns,
'numeric_cols': numeric_cols,
'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols,
'dtypes': df.dtypes.to_string(),
'missing_data': missing_data.to_dict(),
'data_quality': data_quality,
'head': df.head().to_string()
}
# --- Tab 1: AI Overview ---
def analyze_dataset_overview(state_dict, api_key: str):
"""Generates an AI-powered narrative overview of the dataset."""
if not state_dict:
return "β Please upload a dataset first.", "", 0
if not api_key:
return "β Please enter your Gemini API key.", "", 0
metadata = state_dict['metadata']
# Create prompt for Gemini
prompt = f"""
You are an expert data analyst and storyteller. Your task is to provide a high-level, engaging overview of a dataset based on its metadata.
**Dataset Metadata:**
- **Shape:** {metadata['shape'][0]} rows, {metadata['shape'][1]} columns
- **Column Names:** {', '.join(metadata['columns'])}
- **Numeric Columns:** {', '.join(metadata['numeric_cols'])}
- **Categorical Columns:** {', '.join(metadata['categorical_cols'])}
- **Datetime Columns:** {', '.join(metadata['datetime_cols'])}
- **Data Quality (Non-missing values):** {metadata['data_quality']}%
- **First 5 rows:**
{metadata['head']}
**Your Task:**
Based on the metadata, generate a report in Markdown format. Use emojis to make it visually appealing. The report should have the following sections:
# π AI-Powered Dataset Overview
## π€ What is this dataset likely about?
(Predict the domain and purpose of the dataset, e.g., "This appears to be customer transaction data for an e-commerce platform.")
## π‘ Potential Key Questions to Explore
- (Suggest 3-4 interesting business or research questions the data could answer.)
- (Example: "Which products are most frequently purchased together?")
## π Potential Analyses & Visualizations
- (List 3-4 types of analyses that would be valuable.)
- (Example: "Time series analysis of sales to identify seasonality.")
## β οΈ Data Quality & Potential Issues
- (Briefly comment on the data quality score and mention if the presence of datetime columns is a good sign for certain analyses.)
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
story = response.text
except Exception as e:
story = f"## β οΈ AI Generation Failed\n**Error:** {str(e)}\n\nPlease check your API key and network connection. A fallback analysis is provided below.\n\n" \
f"### Fallback Analysis\nThis dataset contains **{metadata['shape'][0]}** records and **{metadata['shape'][1]}** features. " \
f"It includes **{len(metadata['numeric_cols'])}** numeric, **{len(metadata['categorical_cols'])}** categorical, " \
f"and **{len(metadata['datetime_cols'])}** time-based columns. The overall data quality is **{metadata['data_quality']}%**, " \
f"which is a good starting point for analysis."
# Basic Info Summary
basic_info = f"""
π **File:** `{state_dict.get('filename', 'N/A')}`
π **Size:** {metadata['shape'][0]:,} rows Γ {metadata['shape'][1]} columns
π’ **Features:**
β’ **Numeric:** {len(metadata['numeric_cols'])}
β’ **Categorical:** {len(metadata['categorical_cols'])}
β’ **DateTime:** {len(metadata['datetime_cols'])}
π― **Data Quality:** {metadata['data_quality']}%
"""
return story, basic_info, metadata['data_quality']
# --- Tab 2: Univariate Analysis ---
def generate_univariate_plot(column_name, state_dict):
"""Generates plots for a single selected variable."""
if not column_name or not state_dict:
return None, "Select a column to analyze."
df = state_dict['df']
metadata = state_dict['metadata']
fig = None
summary = ""
if column_name in metadata['numeric_cols']:
fig = make_subplots(rows=1, cols=2, subplot_titles=("Histogram", "Box Plot"))
fig.add_trace(go.Histogram(x=df[column_name], name="Histogram"), row=1, col=1)
fig.add_trace(go.Box(y=df[column_name], name="Box Plot"), row=1, col=2)
fig.update_layout(title_text=f"Distribution of '{column_name}'", showlegend=False)
summary = df[column_name].describe().to_frame().to_markdown()
elif column_name in metadata['categorical_cols']:
top_n = 20
counts = df[column_name].value_counts()
title = f"Top {min(top_n, len(counts))} Categories for '{column_name}'"
fig = px.bar(counts.nlargest(top_n), title=title, labels={'index': column_name, 'value': 'Count'})
fig.update_layout(showlegend=False)
summary = counts.to_frame().to_markdown()
elif column_name in metadata['datetime_cols']:
counts = df[column_name].dt.to_period("M").value_counts().sort_index()
fig = px.line(x=counts.index.to_timestamp(), y=counts.values, title=f"Records over Time for '{column_name}'")
fig.update_layout(xaxis_title="Time", yaxis_title="Record Count")
summary = df[column_name].describe(datetime_is_numeric=True).to_frame().to_markdown()
return fig, summary
# --- Tab 3: Bivariate Analysis ---
def generate_bivariate_plot(x_col, y_col, state_dict):
"""Generates plots to explore the relationship between two variables."""
if not x_col or not y_col or not state_dict:
return None, "Select two columns to analyze."
if x_col == y_col:
return None, "Please select two different columns."
df = state_dict['df']
metadata = state_dict['metadata']
x_type = 'numeric' if x_col in metadata['numeric_cols'] else 'categorical'
y_type = 'numeric' if y_col in metadata['numeric_cols'] else 'categorical'
fig = None
title = f"{x_col} vs. {y_col}"
if x_type == 'numeric' and y_type == 'numeric':
fig = px.scatter(df, x=x_col, y=y_col, title=f"Scatter Plot: {title}", trendline="ols", trendline_color_override="red")
summary = df[[x_col, y_col]].corr().to_markdown()
elif x_type == 'numeric' and y_type == 'categorical':
fig = px.box(df, x=x_col, y=y_col, title=f"Box Plot: {title}")
summary = df.groupby(y_col)[x_col].describe().to_markdown()
elif x_type == 'categorical' and y_type == 'numeric':
fig = px.box(df, x=y_col, y=x_col, title=f"Box Plot: {title}")
summary = df.groupby(x_col)[y_col].describe().to_markdown()
else: # Both categorical
crosstab = pd.crosstab(df[x_col], df[y_col])
fig = px.imshow(crosstab, title=f"Heatmap of Counts: {title}", text_auto=True)
summary = crosstab.to_markdown()
return fig, f"### Analysis Summary\n{summary}"
# --- Tab 4: Time Series Analysis ---
def generate_time_series_plot(time_col, value_col, resample_freq, state_dict):
"""Generates a time series plot with resampling."""
if not time_col or not value_col or not state_dict:
return None, "Select Time and Value columns."
df = state_dict['df'].copy()
try:
df[time_col] = pd.to_datetime(df[time_col])
df_resampled = df.set_index(time_col)[value_col].resample(resample_freq).mean().reset_index()
fig = px.line(df_resampled, x=time_col, y=value_col,
title=f"Time Series of {value_col} (Resampled to '{resample_freq}')")
fig.update_layout(xaxis_title="Date", yaxis_title=f"Mean of {value_col}")
return fig, f"Showing mean of '{value_col}' aggregated by '{resample_freq}'."
except Exception as e:
return None, f"Error: {e}"
# --- Tab 5: AI Analyst Chat ---
def respond_to_chat(user_message, history, state_dict, api_key):
"""Handles the chat interaction with the AI Analyst."""
if not api_key:
history.append((user_message, "I can't answer without a Gemini API key. Please enter it in the 'AI Overview' tab."))
return history, None, ""
if not state_dict:
history.append((user_message, "Please upload a dataset before asking questions."))
return history, None, ""
history.append((user_message, None))
df_metadata = state_dict['metadata']
# Construct a robust prompt for the AI
prompt = f"""
You are an AI Data Analyst assistant. Your name is 'Gemini Analyst'.
You are given a pandas DataFrame named `df`.
Your goal is to answer the user's question about this DataFrame by writing and executing Python code.
**Instructions:**
1. Analyze the user's question.
2. Write Python code to answer it.
3. You can use pandas, numpy, and plotly.express.
4. If you create a plot, you **MUST** assign it to a variable named `fig`. The plot will be displayed to the user.
5. If you are just calculating something or printing text, the `print()` output will be shown.
6. **DO NOT** write any code that modifies the DataFrame (e.g., `df.dropna(inplace=True)`). Use `df.copy()` if you need to modify data.
7. Respond **ONLY** with a JSON object containing two keys: "thought" and "code".
- "thought": A short, one-sentence explanation of your plan.
- "code": A string containing the Python code to execute.
**DataFrame Metadata:**
- **Filename:** {state_dict['filename']}
- **Shape:** {df_metadata['shape'][0]} rows, {df_metadata['shape'][1]} columns
- **Columns and Data Types:**
{df_metadata['dtypes']}
---
**User Question:** "{user_message}"
---
**Your JSON Response:**
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
# Clean and parse the JSON response
response_text = response.text.strip().replace("```json", "").replace("```", "")
response_json = json.loads(response_text)
thought = response_json.get("thought", "Thinking...")
code_to_run = response_json.get("code", "")
bot_message = f"π§ **Thought:** {thought}\n\n"
# Execute the code
local_vars = {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np}
stdout, fig_result, error = safe_exec(code_to_run, local_vars)
if error:
bot_message += f"π₯ **Error:**\n```\n{error}\n```"
history[-1] = (user_message, bot_message)
return history, None, ""
if stdout:
bot_message += f"π **Output:**\n```\n{stdout}\n```"
if not fig_result and not stdout:
bot_message += "β
Code executed successfully, but it produced no visible output."
history[-1] = (user_message, bot_message)
return history, fig_result, ""
except Exception as e:
error_msg = f"An unexpected error occurred: {e}. The AI might have returned an invalid response. Please try rephrasing your question."
logging.error(f"Chatbot error: {error_msg}")
history[-1] = (user_message, error_msg)
return history, None, ""
# --- Gradio Interface ---
def create_gradio_interface():
"""Builds and returns the full Gradio application interface."""
with gr.Blocks(title="π AI Data Explorer", theme=gr.themes.Soft()) as demo:
# Global state to hold data
global_state = gr.State({})
# Header
gr.Markdown("# π AI Data Explorer: Your Advanced Analytic Tool")
gr.Markdown("Upload a CSV, then explore your data with interactive tabs and a powerful AI Analyst.")
# --- Top Row: File Upload and API Key ---
with gr.Row():
with gr.Column(scale=2):
file_input = gr.File(label="π Upload CSV File", file_types=[".csv"])
status_output = gr.Markdown("Status: Waiting for file...")
with gr.Column(scale=1):
api_key_input = gr.Textbox(
label="π Gemini API Key",
placeholder="Enter your key here...",
type="password",
info="Get your free key from Google AI Studio"
)
# --- Main Tabs ---
with gr.Tabs() as tabs:
# Tab 1: AI Overview
with gr.Tab("π€ AI Overview", id=0):
overview_btn = gr.Button("π§ Generate AI Overview", variant="primary")
with gr.Row():
story_output = gr.Markdown(label="π AI-Generated Story")
with gr.Column():
basic_info_output = gr.Markdown(label="π Basic Information")
quality_score = gr.Number(label="π― Data Quality Score (%)", interactive=False)
# Tab 2: Univariate Analysis
with gr.Tab("π Univariate Analysis", id=1):
uni_col_select = gr.Dropdown(label="Select a Column to Analyze", interactive=False)
with gr.Row():
uni_plot_output = gr.Plot(label="Distribution Plot")
uni_summary_output = gr.Markdown(label="Summary Statistics")
# Tab 3: Bivariate Analysis
with gr.Tab("π Bivariate Analysis", id=2):
with gr.Row():
bi_x_select = gr.Dropdown(label="Select X-Axis Column", interactive=False)
bi_y_select = gr.Dropdown(label="Select Y-Axis Column", interactive=False)
bi_btn = gr.Button("π¨ Generate Bivariate Plot", variant="secondary")
with gr.Row():
bi_plot_output = gr.Plot(label="Relationship Plot")
bi_summary_output = gr.Markdown(label="Analysis Summary")
# Tab 4: Time Series (conditionally visible)
with gr.Tab("β³ Time Series Analysis", id=3, visible=False) as ts_tab:
with gr.Row():
ts_time_col = gr.Dropdown(label="Select Time Column", interactive=False)
ts_value_col = gr.Dropdown(label="Select Value Column", interactive=False)
ts_resample = gr.Radio(['D', 'W', 'M', 'Q', 'Y'], label="Resample Frequency", value='M')
ts_btn = gr.Button("π Plot Time Series", variant="secondary")
ts_plot_output = gr.Plot(label="Time Series Plot")
ts_status_output = gr.Markdown()
# Tab 5: AI Analyst Chat (conditionally visible)
with gr.Tab("π¬ AI Analyst Chat", id=4, visible=False) as chat_tab:
chatbot = gr.Chatbot(label="Chat with Gemini Analyst", height=500)
chat_plot_output = gr.Plot(label="AI Generated Plot")
with gr.Row():
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'Show me the distribution of age'", scale=4)
chat_submit_btn = gr.Button("Submit", variant="primary", scale=1)
chat_clear_btn = gr.Button("Clear Chat")
# --- Event Handlers ---
# File upload triggers data loading and UI updates
file_input.upload(
fn=load_and_process_file,
inputs=[file_input, global_state],
outputs=[global_state, status_output, uni_col_select, bi_x_select, bi_y_select, ts_value_col, ts_time_col, ts_tab, chat_tab]
)
# Tab 1: Overview
overview_btn.click(
fn=analyze_dataset_overview,
inputs=[global_state, api_key_input],
outputs=[story_output, basic_info_output, quality_score]
)
# Tab 2: Univariate
uni_col_select.change(
fn=generate_univariate_plot,
inputs=[uni_col_select, global_state],
outputs=[uni_plot_output, uni_summary_output]
)
# Tab 3: Bivariate
bi_btn.click(
fn=generate_bivariate_plot,
inputs=[bi_x_select, bi_y_select, global_state],
outputs=[bi_plot_output, bi_summary_output]
)
# Tab 4: Time Series
ts_btn.click(
fn=generate_time_series_plot,
inputs=[ts_time_col, ts_value_col, ts_resample, global_state],
outputs=[ts_plot_output, ts_status_output]
)
# Tab 5: AI Chat
chat_submit_btn.click(
fn=respond_to_chat,
inputs=[chat_input, chatbot, global_state, api_key_input],
outputs=[chatbot, chat_plot_output, chat_input]
)
chat_input.submit(
fn=respond_to_chat,
inputs=[chat_input, chatbot, global_state, api_key_input],
outputs=[chatbot, chat_plot_output, chat_input]
)
chat_clear_btn.click(lambda: ([], None, ""), None, [chatbot, chat_plot_output, chat_input])
return demo
# --- Main Application Execution ---
if __name__ == "__main__":
# For local development, you might use load_dotenv()
# load_dotenv()
app = create_gradio_interface()
app.launch(debug=True) |