File size: 21,074 Bytes
c08faed b5fce9d c08faed 5bd4d74 c08faed b5fce9d c08faed 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d f72077b b5fce9d f72077b f7b84f1 b5fce9d 1956035 b5fce9d 1956035 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d f7b84f1 b5fce9d f72077b f7b84f1 b5fce9d f72077b b5fce9d c08faed b5fce9d f7b84f1 b5fce9d 1956035 b5fce9d 5bd4d74 b5fce9d 1956035 b5fce9d 5bd4d74 b5fce9d 5bd4d74 1956035 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d f72077b b5fce9d 5bd4d74 b5fce9d 5bd4d74 b5fce9d 1956035 b5fce9d 1956035 b5fce9d 1956035 b5fce9d 1956035 b5fce9d 1956035 b5fce9d f72077b b5fce9d 1956035 b5fce9d f72077b b5fce9d 1956035 b5fce9d f72077b b5fce9d c08faed b5fce9d f72077b b5fce9d f72077b b5fce9d f72077b 5bd4d74 1956035 b5fce9d f72077b b5fce9d f72077b b5fce9d f7b84f1 b5fce9d f7b84f1 c08faed b5fce9d 1956035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import io
import json
import warnings
import google.generativeai as genai
import os
from contextlib import redirect_stdout
# --- Configuration ---
warnings.filterwarnings('ignore')
CSS = """
/* --- Phoenix UI Custom CSS --- */
/* Stat Card Styling */
.stat-card {
border-radius: 12px !important;
padding: 20px !important;
background: #f7fafc; /* light gray background */
border: 1px solid #e2e8f0;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
text-align: center;
}
.stat-card-title { font-size: 16px; font-weight: 500; color: #4a5568; margin-bottom: 8px; }
.stat-card-value { font-size: 32px; font-weight: 700; color: #2d3748; }
/* General Layout & Feel */
.gradio-container { font-family: 'Inter', sans-serif; }
.gr-button { box-shadow: 0 1px 2px 0 rgba(0,0,0,0.05); }
/* Sidebar Styling */
.sidebar {
background-color: #f9fafb;
padding: 15px;
border-right: 1px solid #e5e7eb;
min-height: 100vh;
}
.sidebar .gr-button {
width: 100%;
text-align: left !important;
background: none !important;
border: none !important;
box-shadow: none !important;
color: #374151 !important;
font-size: 16px !important;
padding: 12px 10px !important;
margin-bottom: 8px !important;
border-radius: 8px !important;
}
.sidebar .gr-button:hover { background-color: #e5e7eb !important; }
.sidebar .gr-button.selected { background-color: #d1d5db !important; font-weight: 600 !important; }
/* AI Co-pilot Styling */
.code-block { border: 1px solid #e5e7eb; border-radius: 8px; }
.explanation-block { background-color: #f0f9ff; border-left: 4px solid #3b82f6; padding: 12px; }
"""
# --- Helper Functions ---
def safe_exec(code_string: str, local_vars: dict):
"""Safely execute a string of Python code and capture its output."""
output_buffer = io.StringIO()
try:
with redirect_stdout(output_buffer):
exec(code_string, globals(), local_vars)
stdout = output_buffer.getvalue()
fig = local_vars.get('fig')
result_df = local_vars.get('result_df')
return stdout, fig, result_df, None
except Exception as e:
return None, None, None, f"Execution Error: {str(e)}"
# --- Core Data Processing & State Management ---
def load_and_process_file(file_obj, state_dict):
"""Loads a CSV, processes it, and updates the entire UI state."""
if file_obj is None:
return state_dict, "Please upload a file.", *[gr.update(visible=False)] * 4
try:
df = pd.read_csv(file_obj.name, low_memory=False)
for col in df.select_dtypes(include=['object']).columns:
try:
df[col] = pd.to_datetime(df[col], errors='raise')
except (ValueError, TypeError):
continue
metadata = extract_dataset_metadata(df)
state_dict = {
'df': df,
'metadata': metadata,
'filename': os.path.basename(file_obj.name),
'dashboard_plots': []
}
status_msg = f"β
**{state_dict['filename']}** loaded successfully."
# Update UI elements with new data context
cockpit_update = gr.update(visible=True)
deep_dive_update = gr.update(visible=False)
copilot_update = gr.update(visible=False)
welcome_update = gr.update(visible=False)
# Stat cards
rows, cols = metadata['shape']
quality = metadata['data_quality']
return (state_dict, status_msg, welcome_update, cockpit_update, deep_dive_update, copilot_update,
gr.update(value=f"{rows:,}"), gr.update(value=cols), gr.update(value=f"{quality}%"),
gr.update(value=f"{len(metadata['datetime_cols'])}"),
gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']))
except Exception as e:
return state_dict, f"β **Error:** {e}", *[gr.update()] * 11
def extract_dataset_metadata(df: pd.DataFrame):
rows, cols = df.shape
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist()
data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
return {
'shape': (rows, cols), 'columns': df.columns.tolist(),
'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols, 'dtypes': df.dtypes.to_string(),
'head': df.head().to_string(), 'data_quality': data_quality
}
# --- Page Navigation ---
def switch_page(page_name):
"""Controls visibility of main content pages."""
if page_name == "cockpit":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif page_name == "deep_dive":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
elif page_name == "co-pilot":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
# --- Page 1: Data Cockpit ---
def get_ai_suggestions(state_dict, api_key):
"""Generates proactive analytical suggestions from the AI."""
if not api_key: return "Enter your Gemini API key to get suggestions.", gr.update(visible=False)
if not state_dict: return "Upload data first.", gr.update(visible=False)
metadata = state_dict['metadata']
prompt = f"""
Based on the following dataset metadata, generate 3 to 5 specific, actionable, and interesting analytical questions a user might want to ask. Frame them as questions.
- **Columns:** {', '.join(metadata['columns'])}
- **Numeric:** {', '.join(metadata['numeric_cols'])}
- **Categorical:** {', '.join(metadata['categorical_cols'])}
- **Datetime:** {', '.join(metadata['datetime_cols'])}
Return ONLY a JSON list of strings. Example: ["What is the trend of sales over time?", "Which category has the highest average price?"]
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
suggestions = json.loads(response.text)
# Create a button for each suggestion
buttons = [gr.Button(s, variant="secondary", visible=True) for s in suggestions]
# Pad with hidden buttons to always have 5 outputs
buttons += [gr.Button(visible=False)] * (5 - len(buttons))
return gr.update(visible=False), *buttons
except Exception as e:
return f"Could not generate suggestions: {e}", *[gr.update(visible=False)]*5
def handle_suggestion_click(question_text):
"""When a suggestion button is clicked, switch to the co-pilot page and populate the input."""
return (
gr.update(visible=False), # Hide cockpit
gr.update(visible=False), # Hide deep dive
gr.update(visible=True), # Show co-pilot
question_text # Populate the chat input
)
# --- Page 2: Deep Dive Dashboard ---
def add_plot_to_dashboard(state_dict, x_col, y_col, plot_type):
"""Generates a plot and adds it to the state-managed dashboard."""
if not x_col: return state_dict, gr.update()
df = state_dict['df']
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}"
fig = None
try:
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols")
elif plot_type == 'bar':
counts = df[x_col].value_counts().nlargest(20)
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}")
fig.update_xaxes(title=x_col)
if fig:
state_dict['dashboard_plots'].append(fig)
# Rebuild the accordion with all plots
accordion_children = [gr.Plot(fig, visible=True) for fig in state_dict['dashboard_plots']]
return state_dict, gr.Accordion(label="Your Dashboard Plots", children=accordion_children, open=True)
except Exception as e:
gr.Warning(f"Plotting Error: {e}")
return state_dict, gr.update()
def clear_dashboard(state_dict):
"""Clears all plots from the dashboard."""
state_dict['dashboard_plots'] = []
return state_dict, gr.Accordion(label="Your Dashboard Plots", children=[])
# --- Page 3: AI Co-pilot ---
def respond_to_chat(user_message, history, state_dict, api_key):
"""Handles the advanced chat interaction with the AI Co-pilot."""
if not api_key:
history.append((user_message, "I need a Gemini API key to function. Please provide it in the sidebar."))
return history, *[gr.update(visible=False)] * 4
if not state_dict:
history.append((user_message, "Please upload a dataset first."))
return history, *[gr.update(visible=False)] * 4
history.append((user_message, None))
metadata = state_dict['metadata']
prompt = f"""
You are 'Phoenix Co-pilot', an expert AI data analyst. Your goal is to help a user analyze a pandas DataFrame named `df`.
**Instructions:**
1. Carefully understand the user's question.
2. Formulate a plan (thought process).
3. Write Python code to execute that plan.
4. The code can use pandas (pd), numpy (np), and plotly.express (px).
5. **For plots, assign the figure to a variable `fig` (e.g., `fig = px.histogram(...)`).**
6. **For table-like results, assign the final DataFrame to a variable `result_df` (e.g., `result_df = df.describe()`).**
7. Do not modify the original `df`. Use `df.copy()` if needed.
8. Provide a brief, user-friendly explanation of the result.
9. Respond **ONLY** with a single, raw JSON object with keys: "thought", "code", "explanation".
**DataFrame Metadata:**
- Columns and dtypes: {metadata['dtypes']}
- First 5 rows: {metadata['head']}
**User Question:** "{user_message}"
**Your JSON Response:**
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
response_text = response.text.strip().replace("```json", "").replace("```", "")
response_json = json.loads(response_text)
thought = response_json.get("thought", "Thinking...")
code_to_run = response_json.get("code", "")
explanation = response_json.get("explanation", "Here is the result.")
stdout, fig_result, df_result, error = safe_exec(code_to_run, {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np})
bot_message = f"π€ **Thought:** *{thought}*"
history[-1] = (user_message, bot_message)
# Prepare outputs, making them visible only if they contain content
output_updates = [gr.update(visible=False, value=None)] * 4 # [explanation, code, plot, table]
if explanation: output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** {explanation}")
if code_to_run: output_updates[1] = gr.update(visible=True, value=code_to_run)
if fig_result: output_updates[2] = gr.update(visible=True, value=fig_result)
if df_result is not None: output_updates[3] = gr.update(visible=True, value=df_result)
if stdout:
# Append stdout to explanation if it exists
new_explanation = (output_updates[0]['value'] if output_updates[0]['visible'] else "") + f"\n\n**Console Output:**\n```\n{stdout}\n```"
output_updates[0] = gr.update(visible=True, value=new_explanation)
if error:
error_explanation = f"**Phoenix Co-pilot:** I encountered an error. Here's the details:\n\n`{error}`"
output_updates[0] = gr.update(visible=True, value=error_explanation)
return history, *output_updates
except Exception as e:
error_msg = f"A critical error occurred: {e}. The AI may have returned an invalid response. Please try rephrasing your question."
history[-1] = (user_message, error_msg)
return history, *[gr.update(visible=False)] * 4
# --- Gradio UI Definition ---
def create_gradio_interface():
with gr.Blocks(theme=gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Phoenix AI Data Explorer") as demo:
global_state = gr.State({})
with gr.Row():
# --- Sidebar ---
with gr.Column(scale=1, elem_classes="sidebar"):
gr.Markdown("# π Phoenix UI")
gr.Markdown("AI Data Explorer")
# Navigation buttons
cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected")
deep_dive_btn = gr.Button("π Deep Dive Builder")
copilot_btn = gr.Button("π€ AI Co-pilot")
gr.Markdown("---")
file_input = gr.File(label="π Upload New CSV", file_types=[".csv"])
status_output = gr.Markdown("Status: Awaiting data...")
gr.Markdown("---")
api_key_input = gr.Textbox(label="π Gemini API Key", type="password", placeholder="Enter key here...")
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary")
# --- Main Content Area ---
with gr.Column(scale=4):
# Welcome Page (Visible initially)
with gr.Column(visible=True) as welcome_page:
gr.Markdown("# Welcome to the AI Data Explorer (Phoenix UI)", elem_id="welcome-header")
gr.Markdown("Please **upload a CSV file** and **enter your Gemini API key** in the sidebar to begin.")
# CORRECTED: Uses a local file, 'workflow.png', which must be in the same directory.
gr.Image(value="workflow.png", label="Workflow", show_label=False, show_download_button=False, container=False)
# Page 1: Data Cockpit (Hidden initially)
with gr.Column(visible=False) as cockpit_page:
gr.Markdown("## π Data Cockpit")
with gr.Row():
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Rows</div>", elem_classes="stat-card-content")
rows_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value")
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Columns</div>", elem_classes="stat-card-content")
cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value")
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Data Quality</div>", elem_classes="stat-card-content")
quality_stat = gr.Textbox("0%", show_label=False, elem_classes="stat-card-value")
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>", elem_classes="stat-card-content")
time_cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value")
suggestion_status = gr.Markdown(visible=True)
with gr.Accordion(label="β¨ AI Smart Suggestions", open=True):
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
# Page 2: Deep Dive Dashboard Builder (Hidden initially)
with gr.Column(visible=False) as deep_dive_page:
gr.Markdown("## π Deep Dive Dashboard Builder")
gr.Markdown("Create a custom dashboard by adding multiple plots to investigate your data.")
with gr.Row():
plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
x_col_dd = gr.Dropdown([], label="X-Axis / Column")
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)")
with gr.Row():
add_plot_btn = gr.Button("Add to Dashboard", variant="primary")
clear_plots_btn = gr.Button("Clear Dashboard")
dashboard_accordion = gr.Accordion(label="Your Dashboard Plots", open=True)
# Page 3: AI Co-pilot (Hidden initially)
with gr.Column(visible=False) as copilot_page:
gr.Markdown("## π€ AI Co-pilot")
gr.Markdown("Ask complex questions in natural language. The Co-pilot will write and execute code to find the answer.")
chatbot = gr.Chatbot(height=400, label="Conversation with Co-pilot", show_copy_button=True)
with gr.Accordion("Co-pilot's Response Details", open=True):
copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
copilot_code = gr.Code(language="python", visible=False, label="Executed Python Code", elem_classes="code-block")
copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True)
with gr.Row():
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the correlation between age and salary?'", scale=4)
chat_submit_btn = gr.Button("Submit", variant="primary")
# --- Event Handlers ---
pages = [cockpit_page, deep_dive_page, copilot_page]
nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn]
for i, btn in enumerate(nav_buttons):
btn.click(
lambda i=i: (gr.update(visible=i==0), gr.update(visible=i==1), gr.update(visible=i==2)),
outputs=pages
).then(
lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))],
outputs=nav_buttons
)
file_input.upload(
fn=load_and_process_file,
inputs=[file_input, global_state],
outputs=[global_state, status_output, welcome_page, cockpit_page, deep_dive_page, copilot_page,
rows_stat, cols_stat, quality_stat, time_cols_stat,
x_col_dd, y_col_dd, plot_type_dd]
).then(
lambda: (gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)), outputs=pages
).then(
lambda: (gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")), outputs=nav_buttons
)
suggestion_btn.click(
get_ai_suggestions,
[global_state, api_key_input],
[suggestion_status, *suggestion_buttons]
)
for btn in suggestion_buttons:
btn.click(
handle_suggestion_click,
inputs=[btn],
outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input]
).then(
lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")),
outputs=nav_buttons
)
add_plot_btn.click(add_plot_to_dashboard, [global_state, x_col_dd, y_col_dd, plot_type_dd], [global_state, dashboard_accordion])
clear_plots_btn.click(clear_dashboard, [global_state], [global_state, dashboard_accordion])
chat_submit_btn.click(
respond_to_chat,
[chat_input, chatbot, global_state, api_key_input],
[chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]
).then(lambda: "", outputs=[chat_input])
chat_input.submit(
respond_to_chat,
[chat_input, chatbot, global_state, api_key_input],
[chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]
).then(lambda: "", outputs=[chat_input])
return demo
if __name__ == "__main__":
app = create_gradio_interface()
app.launch(debug=True) |