File size: 21,074 Bytes
c08faed
 
 
 
 
b5fce9d
 
 
 
 
 
c08faed
5bd4d74
c08faed
 
b5fce9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c08faed
5bd4d74
b5fce9d
5bd4d74
 
 
 
 
b5fce9d
5bd4d74
 
b5fce9d
 
5bd4d74
 
 
b5fce9d
 
 
 
f72077b
b5fce9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f72077b
f7b84f1
b5fce9d
 
 
 
 
 
1956035
b5fce9d
 
 
 
1956035
 
b5fce9d
 
 
 
 
 
 
 
 
 
5bd4d74
b5fce9d
 
 
 
 
5bd4d74
b5fce9d
 
 
 
 
 
 
f7b84f1
b5fce9d
 
 
 
 
 
 
 
 
f72077b
 
 
 
 
f7b84f1
b5fce9d
f72077b
 
 
 
 
 
 
 
 
 
b5fce9d
 
 
 
 
c08faed
b5fce9d
 
 
f7b84f1
b5fce9d
 
 
 
 
 
 
 
1956035
b5fce9d
 
5bd4d74
b5fce9d
 
 
 
 
 
 
 
 
 
 
1956035
b5fce9d
 
 
5bd4d74
b5fce9d
 
 
 
 
5bd4d74
 
1956035
b5fce9d
5bd4d74
b5fce9d
5bd4d74
 
b5fce9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd4d74
 
b5fce9d
5bd4d74
b5fce9d
 
5bd4d74
b5fce9d
 
 
 
5bd4d74
b5fce9d
 
5bd4d74
b5fce9d
 
 
 
5bd4d74
b5fce9d
 
5bd4d74
b5fce9d
 
 
 
 
 
f72077b
b5fce9d
 
 
 
 
 
 
5bd4d74
b5fce9d
5bd4d74
b5fce9d
1956035
b5fce9d
 
 
 
1956035
 
b5fce9d
 
 
 
1956035
 
b5fce9d
 
 
 
 
 
 
 
 
 
1956035
b5fce9d
1956035
 
b5fce9d
 
 
 
f72077b
 
b5fce9d
 
 
 
1956035
b5fce9d
 
 
 
 
 
 
 
 
 
 
 
 
 
f72077b
 
b5fce9d
 
 
 
 
1956035
b5fce9d
 
 
 
 
 
 
 
 
 
 
 
f72077b
b5fce9d
 
 
 
 
 
 
 
 
 
 
 
 
 
c08faed
b5fce9d
f72077b
 
 
 
 
 
 
b5fce9d
 
 
 
 
 
f72077b
 
 
b5fce9d
f72077b
5bd4d74
1956035
b5fce9d
 
 
f72077b
b5fce9d
f72077b
 
 
 
 
 
 
 
 
 
 
b5fce9d
 
 
 
 
 
 
 
 
 
 
 
 
f7b84f1
b5fce9d
f7b84f1
c08faed
b5fce9d
1956035
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import io
import json
import warnings
import google.generativeai as genai
import os
from contextlib import redirect_stdout

# --- Configuration ---
warnings.filterwarnings('ignore')
CSS = """
/* --- Phoenix UI Custom CSS --- */
/* Stat Card Styling */
.stat-card {
    border-radius: 12px !important;
    padding: 20px !important;
    background: #f7fafc; /* light gray background */
    border: 1px solid #e2e8f0;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
    text-align: center;
}
.stat-card-title { font-size: 16px; font-weight: 500; color: #4a5568; margin-bottom: 8px; }
.stat-card-value { font-size: 32px; font-weight: 700; color: #2d3748; }

/* General Layout & Feel */
.gradio-container { font-family: 'Inter', sans-serif; }
.gr-button { box-shadow: 0 1px 2px 0 rgba(0,0,0,0.05); }

/* Sidebar Styling */
.sidebar {
    background-color: #f9fafb;
    padding: 15px;
    border-right: 1px solid #e5e7eb;
    min-height: 100vh;
}
.sidebar .gr-button {
    width: 100%;
    text-align: left !important;
    background: none !important;
    border: none !important;
    box-shadow: none !important;
    color: #374151 !important;
    font-size: 16px !important;
    padding: 12px 10px !important;
    margin-bottom: 8px !important;
    border-radius: 8px !important;
}
.sidebar .gr-button:hover { background-color: #e5e7eb !important; }
.sidebar .gr-button.selected { background-color: #d1d5db !important; font-weight: 600 !important; }

/* AI Co-pilot Styling */
.code-block { border: 1px solid #e5e7eb; border-radius: 8px; }
.explanation-block { background-color: #f0f9ff; border-left: 4px solid #3b82f6; padding: 12px; }
"""

# --- Helper Functions ---
def safe_exec(code_string: str, local_vars: dict):
    """Safely execute a string of Python code and capture its output."""
    output_buffer = io.StringIO()
    try:
        with redirect_stdout(output_buffer):
            exec(code_string, globals(), local_vars)
        
        stdout = output_buffer.getvalue()
        fig = local_vars.get('fig')
        result_df = local_vars.get('result_df')
        return stdout, fig, result_df, None
    except Exception as e:
        return None, None, None, f"Execution Error: {str(e)}"

# --- Core Data Processing & State Management ---
def load_and_process_file(file_obj, state_dict):
    """Loads a CSV, processes it, and updates the entire UI state."""
    if file_obj is None:
        return state_dict, "Please upload a file.", *[gr.update(visible=False)] * 4
    try:
        df = pd.read_csv(file_obj.name, low_memory=False)
        for col in df.select_dtypes(include=['object']).columns:
            try:
                df[col] = pd.to_datetime(df[col], errors='raise')
            except (ValueError, TypeError):
                continue
        
        metadata = extract_dataset_metadata(df)
        state_dict = {
            'df': df,
            'metadata': metadata,
            'filename': os.path.basename(file_obj.name),
            'dashboard_plots': []
        }
        
        status_msg = f"βœ… **{state_dict['filename']}** loaded successfully."
        
        # Update UI elements with new data context
        cockpit_update = gr.update(visible=True)
        deep_dive_update = gr.update(visible=False)
        copilot_update = gr.update(visible=False)
        welcome_update = gr.update(visible=False)
        
        # Stat cards
        rows, cols = metadata['shape']
        quality = metadata['data_quality']
        
        return (state_dict, status_msg, welcome_update, cockpit_update, deep_dive_update, copilot_update,
                gr.update(value=f"{rows:,}"), gr.update(value=cols), gr.update(value=f"{quality}%"), 
                gr.update(value=f"{len(metadata['datetime_cols'])}"),
                gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']))
    except Exception as e:
        return state_dict, f"❌ **Error:** {e}", *[gr.update()] * 11

def extract_dataset_metadata(df: pd.DataFrame):
    rows, cols = df.shape
    numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
    categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
    datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist()
    data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
    return {
        'shape': (rows, cols), 'columns': df.columns.tolist(),
        'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
        'datetime_cols': datetime_cols, 'dtypes': df.dtypes.to_string(),
        'head': df.head().to_string(), 'data_quality': data_quality
    }

# --- Page Navigation ---
def switch_page(page_name):
    """Controls visibility of main content pages."""
    if page_name == "cockpit":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
    elif page_name == "deep_dive":
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
    elif page_name == "co-pilot":
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
    return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)

# --- Page 1: Data Cockpit ---
def get_ai_suggestions(state_dict, api_key):
    """Generates proactive analytical suggestions from the AI."""
    if not api_key: return "Enter your Gemini API key to get suggestions.", gr.update(visible=False)
    if not state_dict: return "Upload data first.", gr.update(visible=False)
    
    metadata = state_dict['metadata']
    prompt = f"""
    Based on the following dataset metadata, generate 3 to 5 specific, actionable, and interesting analytical questions a user might want to ask. Frame them as questions.
    - **Columns:** {', '.join(metadata['columns'])}
    - **Numeric:** {', '.join(metadata['numeric_cols'])}
    - **Categorical:** {', '.join(metadata['categorical_cols'])}
    - **Datetime:** {', '.join(metadata['datetime_cols'])}
    
    Return ONLY a JSON list of strings. Example: ["What is the trend of sales over time?", "Which category has the highest average price?"]
    """
    try:
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-1.5-flash')
        response = model.generate_content(prompt)
        suggestions = json.loads(response.text)
        
        # Create a button for each suggestion
        buttons = [gr.Button(s, variant="secondary", visible=True) for s in suggestions]
        # Pad with hidden buttons to always have 5 outputs
        buttons += [gr.Button(visible=False)] * (5 - len(buttons))

        return gr.update(visible=False), *buttons
    
    except Exception as e:
        return f"Could not generate suggestions: {e}", *[gr.update(visible=False)]*5

def handle_suggestion_click(question_text):
    """When a suggestion button is clicked, switch to the co-pilot page and populate the input."""
    return (
        gr.update(visible=False), # Hide cockpit
        gr.update(visible=False), # Hide deep dive
        gr.update(visible=True),  # Show co-pilot
        question_text # Populate the chat input
    )

# --- Page 2: Deep Dive Dashboard ---
def add_plot_to_dashboard(state_dict, x_col, y_col, plot_type):
    """Generates a plot and adds it to the state-managed dashboard."""
    if not x_col: return state_dict, gr.update()
    
    df = state_dict['df']
    title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}"
    fig = None
    
    try:
        if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
        elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
        elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols")
        elif plot_type == 'bar': 
            counts = df[x_col].value_counts().nlargest(20)
            fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}")
            fig.update_xaxes(title=x_col)
        
        if fig:
            state_dict['dashboard_plots'].append(fig)
        
        # Rebuild the accordion with all plots
        accordion_children = [gr.Plot(fig, visible=True) for fig in state_dict['dashboard_plots']]
        return state_dict, gr.Accordion(label="Your Dashboard Plots", children=accordion_children, open=True)
    except Exception as e:
        gr.Warning(f"Plotting Error: {e}")
        return state_dict, gr.update()

def clear_dashboard(state_dict):
    """Clears all plots from the dashboard."""
    state_dict['dashboard_plots'] = []
    return state_dict, gr.Accordion(label="Your Dashboard Plots", children=[])

# --- Page 3: AI Co-pilot ---
def respond_to_chat(user_message, history, state_dict, api_key):
    """Handles the advanced chat interaction with the AI Co-pilot."""
    if not api_key:
        history.append((user_message, "I need a Gemini API key to function. Please provide it in the sidebar."))
        return history, *[gr.update(visible=False)] * 4
    if not state_dict:
        history.append((user_message, "Please upload a dataset first."))
        return history, *[gr.update(visible=False)] * 4

    history.append((user_message, None))

    metadata = state_dict['metadata']
    prompt = f"""
    You are 'Phoenix Co-pilot', an expert AI data analyst. Your goal is to help a user analyze a pandas DataFrame named `df`.
    
    **Instructions:**
    1.  Carefully understand the user's question.
    2.  Formulate a plan (thought process).
    3.  Write Python code to execute that plan.
    4.  The code can use pandas (pd), numpy (np), and plotly.express (px).
    5.  **For plots, assign the figure to a variable `fig` (e.g., `fig = px.histogram(...)`).**
    6.  **For table-like results, assign the final DataFrame to a variable `result_df` (e.g., `result_df = df.describe()`).**
    7.  Do not modify the original `df`. Use `df.copy()` if needed.
    8.  Provide a brief, user-friendly explanation of the result.
    9.  Respond **ONLY** with a single, raw JSON object with keys: "thought", "code", "explanation".

    **DataFrame Metadata:**
    - Columns and dtypes: {metadata['dtypes']}
    - First 5 rows: {metadata['head']}

    **User Question:** "{user_message}"

    **Your JSON Response:**
    """
    
    try:
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-1.5-flash')
        response = model.generate_content(prompt)
        
        response_text = response.text.strip().replace("```json", "").replace("```", "")
        response_json = json.loads(response_text)
        
        thought = response_json.get("thought", "Thinking...")
        code_to_run = response_json.get("code", "")
        explanation = response_json.get("explanation", "Here is the result.")
        
        stdout, fig_result, df_result, error = safe_exec(code_to_run, {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np})

        bot_message = f"πŸ€” **Thought:** *{thought}*"
        history[-1] = (user_message, bot_message)
        
        # Prepare outputs, making them visible only if they contain content
        output_updates = [gr.update(visible=False, value=None)] * 4 # [explanation, code, plot, table]
        
        if explanation: output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** {explanation}")
        if code_to_run: output_updates[1] = gr.update(visible=True, value=code_to_run)
        if fig_result: output_updates[2] = gr.update(visible=True, value=fig_result)
        if df_result is not None: output_updates[3] = gr.update(visible=True, value=df_result)
        if stdout:
            # Append stdout to explanation if it exists
            new_explanation = (output_updates[0]['value'] if output_updates[0]['visible'] else "") + f"\n\n**Console Output:**\n```\n{stdout}\n```"
            output_updates[0] = gr.update(visible=True, value=new_explanation)
        if error:
            error_explanation = f"**Phoenix Co-pilot:** I encountered an error. Here's the details:\n\n`{error}`"
            output_updates[0] = gr.update(visible=True, value=error_explanation)

        return history, *output_updates

    except Exception as e:
        error_msg = f"A critical error occurred: {e}. The AI may have returned an invalid response. Please try rephrasing your question."
        history[-1] = (user_message, error_msg)
        return history, *[gr.update(visible=False)] * 4

# --- Gradio UI Definition ---
def create_gradio_interface():
    with gr.Blocks(theme=gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Phoenix AI Data Explorer") as demo:
        global_state = gr.State({})

        with gr.Row():
            # --- Sidebar ---
            with gr.Column(scale=1, elem_classes="sidebar"):
                gr.Markdown("# πŸš€ Phoenix UI")
                gr.Markdown("AI Data Explorer")
                
                # Navigation buttons
                cockpit_btn = gr.Button("πŸ“Š Data Cockpit", elem_classes="selected")
                deep_dive_btn = gr.Button("πŸ” Deep Dive Builder")
                copilot_btn = gr.Button("πŸ€– AI Co-pilot")
                
                gr.Markdown("---")
                file_input = gr.File(label="πŸ“ Upload New CSV", file_types=[".csv"])
                status_output = gr.Markdown("Status: Awaiting data...")
                gr.Markdown("---")
                api_key_input = gr.Textbox(label="πŸ”‘ Gemini API Key", type="password", placeholder="Enter key here...")
                suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary")

            # --- Main Content Area ---
            with gr.Column(scale=4):
                
                # Welcome Page (Visible initially)
                with gr.Column(visible=True) as welcome_page:
                    gr.Markdown("# Welcome to the AI Data Explorer (Phoenix UI)", elem_id="welcome-header")
                    gr.Markdown("Please **upload a CSV file** and **enter your Gemini API key** in the sidebar to begin.")
                    # CORRECTED: Uses a local file, 'workflow.png', which must be in the same directory.
                    gr.Image(value="workflow.png", label="Workflow", show_label=False, show_download_button=False, container=False)

                # Page 1: Data Cockpit (Hidden initially)
                with gr.Column(visible=False) as cockpit_page:
                    gr.Markdown("## πŸ“Š Data Cockpit")
                    with gr.Row():
                        with gr.Column(elem_classes="stat-card"):
                            gr.Markdown("<div class='stat-card-title'>Rows</div>", elem_classes="stat-card-content")
                            rows_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value")
                        with gr.Column(elem_classes="stat-card"):
                            gr.Markdown("<div class='stat-card-title'>Columns</div>", elem_classes="stat-card-content")
                            cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value")
                        with gr.Column(elem_classes="stat-card"):
                            gr.Markdown("<div class='stat-card-title'>Data Quality</div>", elem_classes="stat-card-content")
                            quality_stat = gr.Textbox("0%", show_label=False, elem_classes="stat-card-value")
                        with gr.Column(elem_classes="stat-card"):
                            gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>", elem_classes="stat-card-content")
                            time_cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value")

                    suggestion_status = gr.Markdown(visible=True)
                    with gr.Accordion(label="✨ AI Smart Suggestions", open=True):
                         suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]

                # Page 2: Deep Dive Dashboard Builder (Hidden initially)
                with gr.Column(visible=False) as deep_dive_page:
                    gr.Markdown("## πŸ” Deep Dive Dashboard Builder")
                    gr.Markdown("Create a custom dashboard by adding multiple plots to investigate your data.")
                    with gr.Row():
                        plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
                        x_col_dd = gr.Dropdown([], label="X-Axis / Column")
                        y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)")
                    with gr.Row():
                        add_plot_btn = gr.Button("Add to Dashboard", variant="primary")
                        clear_plots_btn = gr.Button("Clear Dashboard")
                    dashboard_accordion = gr.Accordion(label="Your Dashboard Plots", open=True)

                # Page 3: AI Co-pilot (Hidden initially)
                with gr.Column(visible=False) as copilot_page:
                    gr.Markdown("## πŸ€– AI Co-pilot")
                    gr.Markdown("Ask complex questions in natural language. The Co-pilot will write and execute code to find the answer.")
                    chatbot = gr.Chatbot(height=400, label="Conversation with Co-pilot", show_copy_button=True)
                    
                    with gr.Accordion("Co-pilot's Response Details", open=True):
                        copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
                        copilot_code = gr.Code(language="python", visible=False, label="Executed Python Code", elem_classes="code-block")
                        copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
                        copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True)

                    with gr.Row():
                        chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the correlation between age and salary?'", scale=4)
                        chat_submit_btn = gr.Button("Submit", variant="primary")

        # --- Event Handlers ---
        pages = [cockpit_page, deep_dive_page, copilot_page]
        nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn]
        
        for i, btn in enumerate(nav_buttons):
            btn.click(
                lambda i=i: (gr.update(visible=i==0), gr.update(visible=i==1), gr.update(visible=i==2)),
                outputs=pages
            ).then(
                lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))],
                outputs=nav_buttons
            )

        file_input.upload(
            fn=load_and_process_file,
            inputs=[file_input, global_state],
            outputs=[global_state, status_output, welcome_page, cockpit_page, deep_dive_page, copilot_page,
                     rows_stat, cols_stat, quality_stat, time_cols_stat,
                     x_col_dd, y_col_dd, plot_type_dd]
        ).then(
            lambda: (gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)), outputs=pages
        ).then(
            lambda: (gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")), outputs=nav_buttons
        )
        
        suggestion_btn.click(
            get_ai_suggestions,
            [global_state, api_key_input],
            [suggestion_status, *suggestion_buttons]
        )
        
        for btn in suggestion_buttons:
            btn.click(
                handle_suggestion_click,
                inputs=[btn],
                outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input]
            ).then(
                lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")),
                outputs=nav_buttons
            )

        add_plot_btn.click(add_plot_to_dashboard, [global_state, x_col_dd, y_col_dd, plot_type_dd], [global_state, dashboard_accordion])
        clear_plots_btn.click(clear_dashboard, [global_state], [global_state, dashboard_accordion])

        chat_submit_btn.click(
            respond_to_chat, 
            [chat_input, chatbot, global_state, api_key_input], 
            [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]
        ).then(lambda: "", outputs=[chat_input])
        chat_input.submit(
            respond_to_chat, 
            [chat_input, chatbot, global_state, api_key_input], 
            [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]
        ).then(lambda: "", outputs=[chat_input])

    return demo

if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch(debug=True)