File size: 19,464 Bytes
c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 c08faed f7b84f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import io
import json
import warnings
import google.generativeai as genai
import os
import logging
from contextlib import redirect_stdout
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.metrics import accuracy_score, confusion_matrix, r2_score, mean_squared_error
from sklearn.preprocessing import LabelEncoder
# --- Configuration ---
warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
THEME = gr.themes.Glass(primary_hue="blue", secondary_hue="cyan").set(
body_background_fill="rgba(0,0,0,0.8)",
block_background_fill="rgba(0,0,0,0.6)",
block_border_width="1px",
border_color_primary="rgba(255,255,255,0.1)"
)
MODEL_REGISTRY = {
"Classification": {"Random Forest": RandomForestClassifier, "Logistic Regression": LogisticRegression},
"Regression": {"Random Forest": RandomForestRegressor, "Linear Regression": LinearRegression}
}
# --- Core Logic ---
def safe_exec(code_string: str, local_vars: dict) -> tuple:
"""Safely execute a string of Python code and capture its output."""
output_buffer = io.StringIO()
try:
with redirect_stdout(output_buffer):
exec(code_string, globals(), local_vars)
stdout = output_buffer.getvalue()
fig = local_vars.get('fig')
df_out = local_vars.get('df_result')
return stdout, fig, df_out, None
except Exception as e:
return None, None, None, f"Execution Error: {str(e)}"
def prime_data(file_obj):
"""Loads, analyzes, and primes the entire application state upon file upload."""
if not file_obj:
return {gr.update(visible=False): None}
try:
df = pd.read_csv(file_obj.name)
# Smart type conversion
for col in df.select_dtypes(include=['object']).columns:
try:
df[col] = pd.to_datetime(df[col], errors='raise')
except (ValueError, TypeError):
if df[col].nunique() / len(df) < 0.5: # If not too many unique values
df[col] = df[col].astype('category')
# --- Phoenix Eye: Proactive Insights Engine ---
insights = {}
metadata = extract_dataset_metadata(df)
# 1. Missing Data
missing = df.isnull().sum()
insights['missing'] = missing[missing > 0].sort_values(ascending=False)
# 2. High Cardinality
insights['high_cardinality'] = {c: df[c].nunique() for c in metadata['categorical_cols'] if df[c].nunique() > 50}
# 3. High Correlations
if len(metadata['numeric_cols']) > 1:
corr = df[metadata['numeric_cols']].corr().abs()
sol = corr.unstack()
so = sol.sort_values(kind="quicksort", ascending=False)
so = so[so < 1] # Remove self-correlation
insights['high_correlations'] = so.head(5)
# 4. Outlier Detection (IQR method)
outliers = {}
for col in metadata['numeric_cols']:
Q1, Q3 = df[col].quantile(0.25), df[col].quantile(0.75)
IQR = Q3 - Q1
outlier_count = ((df[col] < (Q1 - 1.5 * IQR)) | (df[col] > (Q3 + 1.5 * IQR))).sum()
if outlier_count > 0:
outliers[col] = outlier_count
insights['outliers'] = outliers
# 5. ML Target Suggestion
suggestions = []
for col in metadata['categorical_cols']:
if df[col].nunique() == 2:
suggestions.append(f"{col} (Binary Classification)")
for col in metadata['numeric_cols']:
if df[col].nunique() > 20: # Heuristic for continuous target
suggestions.append(f"{col} (Regression)")
insights['ml_suggestions'] = suggestions
state = {
'df_original': df,
'df_modified': df.copy(),
'filename': os.path.basename(file_obj.name),
'metadata': metadata,
'proactive_insights': insights
}
# Generate UI updates
overview_md = generate_phoenix_eye_markdown(state)
all_cols = metadata['columns']
num_cols = metadata['numeric_cols']
cat_cols = metadata['categorical_cols']
return {
global_state: state,
phoenix_tabs: gr.update(visible=True),
phoenix_eye_output: overview_md,
# Data Medic updates
medic_col_select: gr.update(choices=insights['missing'].index.tolist() or [], interactive=True),
# Oracle updates
oracle_target_select: gr.update(choices=all_cols, interactive=True),
oracle_feature_select: gr.update(choices=all_cols, interactive=True),
}
except Exception as e:
logging.error(f"Priming Error: {e}")
return {phoenix_eye_output: gr.update(value=f"โ **Error:** {e}")}
def extract_dataset_metadata(df):
"""Extracts typed metadata from a DataFrame."""
rows, cols = df.shape
return {
'shape': (rows, cols),
'columns': df.columns.tolist(),
'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(),
'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
'dtypes': df.dtypes.apply(lambda x: x.name).to_dict()
}
def generate_phoenix_eye_markdown(state):
"""Creates the markdown for the proactive insights dashboard."""
insights = state['proactive_insights']
md = f"## ๐ฆ
Phoenix Eye: Proactive Insights for `{state['filename']}`\n"
md += f"Dataset has **{state['metadata']['shape'][0]} rows** and **{state['metadata']['shape'][1]} columns**.\n\n"
# ML Suggestions
md += "### ๐ฎ Potential ML Targets\n"
if insights['ml_suggestions']:
for s in insights['ml_suggestions']: md += f"- `{s}`\n"
else: md += "No obvious ML target columns found.\n"
md += "\n"
# Missing Data
md += "### ๐ง Missing Data\n"
if not insights['missing'].empty:
md += "Found missing values in these columns. Use the **Data Medic** tab to fix.\n"
md += insights['missing'].to_frame('Missing Count').to_markdown() + "\n"
else: md += "โ
No missing data found!\n"
md += "\n"
# High Correlation
md += "### ๐ Top Correlations\n"
if 'high_correlations' in insights and not insights['high_correlations'].empty:
md += insights['high_correlations'].to_frame('Correlation').to_markdown() + "\n"
else: md += "No strong correlations found between numeric features.\n"
md += "\n"
# Outliers
md += "### ๐ Outlier Alert\n"
if insights['outliers']:
for col, count in insights['outliers'].items(): md += f"- `{col}` has **{count}** potential outliers.\n"
else: md += "โ
No significant outliers detected.\n"
md += "\n"
# High Cardinality
md += "### ๐ High Cardinality Warning\n"
if insights['high_cardinality']:
for col, count in insights['high_cardinality'].items(): md += f"- `{col}` has **{count}** unique values, which may be problematic for some models.\n"
else: md += "โ
No high-cardinality categorical columns found.\n"
md += "\n"
return md
# --- Tab Handlers ---
def medic_preview_imputation(state, col, method):
"""Shows a before-and-after plot for data imputation."""
if not col: return None
df_orig = state['df_original']
df_mod = df_orig.copy()
if method == 'mean': value = df_mod[col].mean()
elif method == 'median': value = df_mod[col].median()
else: value = df_mod[col].mode()[0]
df_mod[col] = df_mod[col].fillna(value)
fig = go.Figure()
fig.add_trace(go.Histogram(x=df_orig[col], name='Before', opacity=0.7))
fig.add_trace(go.Histogram(x=df_mod[col], name='After', opacity=0.7))
fig.update_layout(barmode='overlay', title=f"'{col}' Distribution: Before vs. After Imputation", legend_title_text='Dataset')
return fig
def medic_apply_imputation(state, col, method):
"""Applies imputation and updates the main state."""
if not col: return state, "No column selected."
df_mod = state['df_modified'].copy()
if method == 'mean': value = df_mod[col].mean()
elif method == 'median': value = df_mod[col].median()
else: value = df_mod[col].mode()[0]
df_mod[col] = df_mod[col].fillna(value)
state['df_modified'] = df_mod
# Re-run proactive insights on the modified df
state['proactive_insights']['missing'] = df_mod.isnull().sum()
state['proactive_insights']['missing'] = state['proactive_insights']['missing'][state['proactive_insights']['missing'] > 0]
return state, f"โ
Applied '{method}' imputation to '{col}'.", gr.update(choices=state['proactive_insights']['missing'].index.tolist())
def download_cleaned_data(state):
"""Saves the modified dataframe to a csv and returns the path."""
if state:
df = state['df_modified']
# Gradio handles the tempfile creation
return gr.File.update(value=df.to_csv(index=False), visible=True)
return gr.File.update(visible=False)
def oracle_run_model(state, target, features, model_name):
"""Trains a simple ML model and returns metrics and plots."""
if not target or not features: return None, None, "Please select a target and at least one feature."
df = state['df_modified'].copy()
# Preprocessing
df.dropna(subset=features + [target], inplace=True)
if df.empty: return None, None, "Not enough data after dropping NA values."
le = LabelEncoder()
for col in features + [target]:
if df[col].dtype == 'object' or df[col].dtype.name == 'category':
df[col] = le.fit_transform(df[col])
X = df[features]
y = df[target]
problem_type = "Classification" if y.nunique() <= 10 else "Regression"
if model_name not in MODEL_REGISTRY[problem_type]:
return None, None, f"Model {model_name} not suitable for {problem_type}."
model = MODEL_REGISTRY[problem_type][model_name](random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model.fit(X_train, y_train)
preds = model.predict(X_test)
# Results
if problem_type == "Classification":
acc = accuracy_score(y_test, preds)
cm = confusion_matrix(y_test, preds)
cm_fig = px.imshow(cm, text_auto=True, title=f"Confusion Matrix (Accuracy: {acc:.2f})")
if hasattr(model, 'feature_importances_'):
fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False)
fi_fig = px.bar(fi, title="Feature Importance")
return fi_fig, cm_fig, f"**Classification Report:**\n- Accuracy: {acc:.2f}"
else:
return None, cm_fig, f"**Classification Report:**\n- Accuracy: {acc:.2f}"
else: # Regression
r2 = r2_score(y_test, preds)
rmse = np.sqrt(mean_squared_error(y_test, preds))
preds_fig = px.scatter(x=y_test, y=preds, labels={'x': 'Actual Values', 'y': 'Predicted Values'},
title=f"Predictions vs. Actuals (Rยฒ: {r2:.2f})", trendline='ols')
if hasattr(model, 'feature_importances_'):
fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False)
fi_fig = px.bar(fi, title="Feature Importance")
return fi_fig, preds_fig, f"**Regression Report:**\n- Rยฒ Score: {r2:.2f}\n- RMSE: {rmse:.2f}"
else:
return None, preds_fig, f"**Regression Report:**\n- Rยฒ Score: {r2:.2f}\n- RMSE: {rmse:.2f}"
def copilot_respond(user_message, history, state, api_key):
"""Handles the AI Co-pilot chat interaction."""
if not api_key:
return history + [(user_message, "I need a Gemini API key to function.")], None, None, ""
history += [(user_message, None)]
prompt = f"""
You are 'Phoenix Co-pilot', a world-class AI data analyst. Your goal is to help the user by writing and executing Python code.
You have access to a pandas DataFrame named `df`. This is the user's LATEST data, including any cleaning they've performed.
**DataFrame Info:**
- Columns and dtypes: {json.dumps(state['metadata']['dtypes'])}
**Instructions:**
1. Analyze the user's request: '{user_message}'.
2. Formulate a plan (thought).
3. Write Python code to execute the plan.
4. Use `pandas`, `numpy`, and `plotly.express as px`.
5. To show a plot, assign it to a variable `fig`. Ex: `fig = px.histogram(df, x='age')`.
6. To show a dataframe, assign it to a variable `df_result`. Ex: `df_result = df.describe()`.
7. Use `print()` for text output.
8. **NEVER** modify `df` in place. Use `df.copy()` if needed.
9. Respond **ONLY** with a single, valid JSON object with keys "thought" and "code".
**User Request:** "{user_message}"
**Your JSON Response:**
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
# Clean and parse JSON
response_json = json.loads(response.text.strip().replace("```json", "").replace("```", ""))
thought = response_json.get("thought", "Thinking...")
code_to_run = response_json.get("code", "print('No code generated.')")
bot_thinking = f"๐ง **Thinking:** *{thought}*"
history[-1] = (user_message, bot_thinking)
yield history, None, None, gr.update(value=code_to_run)
# Execute Code
local_vars = {'df': state['df_modified'], 'px': px, 'pd': pd, 'np': np}
stdout, fig_result, df_result, error = safe_exec(code_to_run, local_vars)
bot_response = bot_thinking + "\n\n---\n\n"
if error:
bot_response += f"๐ฅ **Execution Error:**\n```\n{error}\n```"
if stdout:
bot_response += f"๐ **Output:**\n```\n{stdout}\n```"
if not error and not stdout and not fig_result and not isinstance(df_result, pd.DataFrame):
bot_response += "โ
Code executed, but produced no direct output."
history[-1] = (user_message, bot_response)
yield history, fig_result, df_result, gr.update(value=code_to_run)
except Exception as e:
error_msg = f"A critical error occurred: {e}. The AI may have returned invalid JSON. Check the generated code."
history[-1] = (user_message, error_msg)
yield history, None, None, ""
# --- Gradio UI Construction ---
with gr.Blocks(theme=THEME, title="Phoenix AI Data Explorer") as demo:
global_state = gr.State({})
gr.Markdown("# ๐ฅ Phoenix AI Data Explorer")
gr.Markdown("The next-generation analytic tool. Upload your data to awaken the Phoenix.")
with gr.Row():
file_input = gr.File(label="๐ Upload CSV", file_types=[".csv"])
api_key_input = gr.Textbox(label="๐ Gemini API Key", type="password", placeholder="Enter Google AI Studio key...")
with gr.Tabs(visible=False) as phoenix_tabs:
with gr.Tab("๐ฆ
Phoenix Eye"):
phoenix_eye_output = gr.Markdown()
with gr.Tab("๐ฉบ Data Medic"):
gr.Markdown("### Cleanse Your Data\nSelect a column with missing values and choose a method to fill them.")
with gr.Row():
medic_col_select = gr.Dropdown(label="Select Column to Clean")
medic_method_select = gr.Radio(['mean', 'median', 'mode'], label="Imputation Method", value='mean')
medic_preview_btn = gr.Button("๐ Preview Changes")
medic_plot = gr.Plot()
with gr.Row():
medic_apply_btn = gr.Button("โ
Apply & Save Changes", variant="primary")
medic_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Download Cleaned Data", open=False):
download_btn = gr.Button("โฌ๏ธ Download Cleaned CSV")
download_file_output = gr.File(label="Download Link", visible=False)
with gr.Tab("๐ฎ The Oracle (Predictive Modeling)"):
gr.Markdown("### Glimpse the Future\nTrain a simple model to see the predictive power of your data.")
with gr.Row():
oracle_target_select = gr.Dropdown(label="๐ฏ Select Target Variable")
oracle_feature_select = gr.Multiselect(label="โจ Select Features")
oracle_model_select = gr.Dropdown(choices=["Random Forest", "Logistic Regression", "Linear Regression"], label="๐ง Select Model")
oracle_run_btn = gr.Button("๐ Train Model!", variant="primary")
oracle_status = gr.Markdown()
with gr.Row():
oracle_fig1 = gr.Plot()
oracle_fig2 = gr.Plot()
with gr.Tab("๐ค AI Co-pilot"):
gr.Markdown("### Your Conversational Analyst\nAsk any question about your data in plain English.")
copilot_chatbot = gr.Chatbot(label="Chat History", height=400)
with gr.Accordion("AI Generated Results", open=True):
copilot_fig_output = gr.Plot()
copilot_df_output = gr.Dataframe(interactive=False)
with gr.Accordion("Generated Code", open=False):
copilot_code_output = gr.Code(language="python", interactive=False)
with gr.Row():
copilot_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What's the correlation between age and salary?'", scale=4)
copilot_submit_btn = gr.Button("Submit", variant="primary", scale=1)
# --- Event Wiring ---
file_input.upload(
fn=prime_data,
inputs=file_input,
outputs=[global_state, phoenix_tabs, phoenix_eye_output, medic_col_select, oracle_target_select, oracle_feature_select],
show_progress="full"
)
# Data Medic
medic_preview_btn.click(medic_preview_imputation, [global_state, medic_col_select, medic_method_select], medic_plot)
medic_apply_btn.click(medic_apply_imputation, [global_state, medic_col_select, medic_method_select], [global_state, medic_status, medic_col_select])
download_btn.click(download_cleaned_data, [global_state], download_file_output)
# Oracle
oracle_run_btn.click(
oracle_run_model,
[global_state, oracle_target_select, oracle_feature_select, oracle_model_select],
[oracle_fig1, oracle_fig2, oracle_status],
show_progress="full"
)
# AI Co-pilot
copilot_submit_btn.click(
copilot_respond,
[copilot_input, copilot_chatbot, global_state, api_key_input],
[copilot_chatbot, copilot_fig_output, copilot_df_output, copilot_code_output]
).then(lambda: "", copilot_input, copilot_input) # Clear input after submit
if __name__ == "__main__":
demo.launch(debug=True) |