File size: 17,911 Bytes
60da408 c9ba3ae 0d6622c c9ba3ae 6eb2933 0d6622c c9ba3ae f9d0aef c9ba3ae 60da408 c9ba3ae f9d0aef c9ba3ae c08faed c9ba3ae c08faed 60da408 b5fce9d 60da408 f9d0aef 0d6622c 6eb2933 0d6622c c9ba3ae 60da408 c9ba3ae 0d6622c c9ba3ae 6eb2933 c9ba3ae f9d0aef 60da408 f9d0aef 60da408 0d6622c 60da408 c9ba3ae 60da408 0d6622c 60da408 b5fce9d 60da408 0d6622c f9d0aef 0d6622c 60da408 c9ba3ae 6eb2933 0d6622c 60da408 4b2fe64 0d6622c c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 6eb2933 60da408 c9ba3ae 6eb2933 c9ba3ae 0d6622c f9d0aef 6eb2933 c9ba3ae 6eb2933 0d6622c c9ba3ae 6eb2933 c9ba3ae 6eb2933 4b2fe64 0d6622c 1b21942 0d6622c 6eb2933 0d6622c c9ba3ae 6eb2933 f9d0aef 6eb2933 f9d0aef 6eb2933 f9d0aef 0d6622c c9ba3ae 0d6622c 6eb2933 0d6622c 6eb2933 0d6622c 6eb2933 0d6622c 6eb2933 0d6622c f9d0aef 6eb2933 f9d0aef 6eb2933 0d6622c f9d0aef 0d6622c 6eb2933 0d6622c c9ba3ae 0d6622c 4b2fe64 0d6622c 60da408 c9ba3ae 0d6622c f9d0aef 6eb2933 0d6622c 6eb2933 c9ba3ae 60da408 f9d0aef 6eb2933 f9d0aef 60da408 0d6622c 60da408 c9ba3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# -*- coding: utf-8 -*-
#
# PROJECT: CognitiveEDA - The Adaptive Intelligence Engine
#
# DESCRIPTION: A world-class data discovery platform that provides a complete suite
# of standard EDA tools and intelligently unlocks specialized analysis
# modules for Time-Series, Text, and Clustering, offering a truly
# comprehensive and context-aware analytical experience.
#
# SETUP: $ pip install -r requirements.txt
#
# AUTHOR: An MCP Expert in Data & AI Solutions
# VERSION: 4.2 (Bugfix Edition: AI Narrative Engine Restored)
# LAST-UPDATE: 2023-10-29 (Fixed critical bug where AI was not being called)
from __future__ import annotations
import warnings
import logging
import os
from datetime import datetime
from typing import Any, Dict, Optional, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
# --- Local Adaptive Modules (Requires analysis_modules.py and requirements.txt) ---
from analysis_modules import analyze_time_series, generate_word_cloud, perform_clustering
# --- Configuration & Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s')
warnings.filterwarnings('ignore', category=FutureWarning)
class Config:
APP_TITLE = "π CognitiveEDA: The Adaptive Intelligence Engine"
GEMINI_MODEL = 'gemini-1.5-flash-latest'
MAX_UI_ROWS = 50000
# --- Core Analysis Engine ---
class DataAnalyzer:
"""The complete DataAnalyzer class, now with a fully functional AI engine."""
def __init__(self, df: pd.DataFrame):
if not isinstance(df, pd.DataFrame): raise TypeError("Input must be a pandas DataFrame.")
self.df = df
self._metadata: Optional[Dict[str, Any]] = None
logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}")
@property
def metadata(self) -> Dict[str, Any]:
if self._metadata is None: self._metadata = self._extract_metadata()
return self._metadata
def _extract_metadata(self) -> Dict[str, Any]:
rows, cols = self.df.shape
numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist()
datetime_cols = self.df.select_dtypes(include=['datetime64', 'datetimetz']).columns.tolist()
text_cols = [col for col in categorical_cols if self.df[col].dropna().str.len().mean() > 50]
high_corr_pairs = []
if len(numeric_cols) > 1:
corr_matrix = self.df[numeric_cols].corr().abs()
upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
high_corr_series = upper_tri.stack()
high_corr_pairs = (high_corr_series[high_corr_series > 0.75].reset_index().rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'}).to_dict('records'))
return {
'shape': (rows, cols), 'columns': self.df.columns.tolist(),
'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols, 'text_cols': text_cols,
'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}",
'total_missing': int(self.df.isnull().sum().sum()),
'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2),
'high_corr_pairs': high_corr_pairs,
}
def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
missing = self.df.isnull().sum()
missing_df = pd.DataFrame({'Missing Count': missing, 'Missing Percentage (%)': (missing / len(self.df) * 100).round(2)}).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Count', ascending=False)
numeric_stats = self.df[self.metadata['numeric_cols']].describe(percentiles=[.01, .25, .5, .75, .99]).T
numeric_stats_df = numeric_stats.round(3).reset_index().rename(columns={'index': 'Column'})
cat_stats = self.df[self.metadata['categorical_cols']].describe(include=['object', 'category']).T
cat_stats_df = cat_stats.reset_index().rename(columns={'index': 'Column'})
return missing_df, numeric_stats_df, cat_stats_df
def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]:
meta = self.metadata
dtype_counts = self.df.dtypes.astype(str).value_counts()
fig_types = px.pie(values=dtype_counts.values, names=dtype_counts.index, title="<b>π Data Type Composition</b>", hole=0.4, color_discrete_sequence=px.colors.qualitative.Pastel)
missing_df = self.df.isnull().sum().reset_index(name='count').query('count > 0')
fig_missing = px.bar(missing_df, x='index', y='count', title="<b>π³οΈ Missing Values Distribution</b>", labels={'index': 'Column Name', 'count': 'Number of Missing Values'}).update_xaxes(categoryorder="total descending")
fig_corr = go.Figure()
if len(meta['numeric_cols']) > 1:
corr_matrix = self.df[meta['numeric_cols']].corr()
fig_corr = px.imshow(corr_matrix, text_auto=".2f", aspect="auto", title="<b>π Correlation Matrix</b>", color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
return fig_types, fig_missing, fig_corr
def generate_ai_narrative(self, api_key: str, context: Dict[str, Any]) -> str:
"""Generates a context-aware AI narrative using the Gemini API."""
logging.info(f"Generating AI narrative with context: {list(context.keys())}")
meta = self.metadata
data_snippet_md = self.df.head(5).to_markdown(index=False)
context_prompt = "**PRIMARY ANALYSIS MODES:**\n"
if context.get('is_timeseries'):
context_prompt += "- **Time-Series Detected:** Focus on trends, seasonality, and stationarity. Suggest forecasting models.\n"
if context.get('has_text'):
context_prompt += "- **Long-Form Text Detected:** Note potential for NLP tasks like sentiment analysis or topic modeling.\n"
if not context.get('is_timeseries') and not context.get('has_text'):
context_prompt += "- **General Tabular Data:** Focus on distributions, correlations, and potential for classification/regression modeling.\n"
prompt = f"""
As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive, multi-part data discovery report in Markdown format.
{context_prompt}
**DATASET METADATA:**
- **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns.
- **Data Quality Score:** {meta['data_quality_score']}%
- **Total Missing Values:** {meta['total_missing']:,}
- **Highly Correlated Pairs:** {meta['high_corr_pairs'] if meta['high_corr_pairs'] else 'None detected.'}
- **Data Snippet (First 5 Rows):**
{data_snippet_md}
**REQUIRED REPORT STRUCTURE:**
# π AI Data Discovery Report
## π 1. Executive Summary
* **Primary Objective:** (Deduce the likely purpose of this dataset. What problem could it solve?)
* **Key Finding:** (State the single most interesting insight you've discovered.)
* **Overall State:** (Briefly comment on the data's quality and readiness for analysis.)
## π§ 2. Deep Dive & Quality Assessment
* **Structural Profile:** (Describe the dataset's composition: numeric, categorical, text, time-series features.)
* **Data Quality Audit:** (Elaborate on the quality score and missing values. Are they a major concern?)
* **Redundancy Check:** (Comment on the detected high-correlation pairs and any risks.)
## π‘ 3. Actionable Recommendations
* **Data Cleaning:** (Provide a specific recommendation for handling missing data or outliers.)
* **Feature Engineering:** (Suggest creating a new, valuable feature.)
* **Next Analytical Steps:** (Propose a specific hypothesis to test or a suitable ML model to build.)
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(Config.GEMINI_MODEL)
response = model.generate_content(prompt)
if not response.parts:
blocked_reason = response.prompt_feedback.block_reason.name if response.prompt_feedback else "Unknown"
logging.warning(f"AI response blocked. Reason: {blocked_reason}")
return f"β **AI Report Generation Blocked by Safety Settings**\n**Reason:** `{blocked_reason}`."
return response.text
except Exception as e:
logging.error(f"Gemini API call failed: {e}", exc_info=True)
return f"β **AI Report Generation Failed**\n**Error:** `{str(e)}`"
# --- UI Creation ---
def create_ui():
"""Defines the complete, integrated Gradio user interface."""
def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure:
if not col or not analyzer: return go.Figure()
return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box", template="plotly_white")
def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col:str, color_col:str) -> go.Figure:
if not all([analyzer, x_col, y_col]): return go.Figure()
return px.scatter(analyzer.df, x=x_col, y=y_col, color=color_col, title=f"<b>Scatter Plot: {x_col} vs. {y_col}</b>", template="plotly_white")
def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]:
if not col or not analyzer: return "", go.Figure()
series = analyzer.df[col]
stats_md = f"### π **Deep Dive: `{col}`**\n- **Data Type:** `{series.dtype}`\n- **Unique Values:** `{series.nunique()}`\n- **Missing:** `{series.isnull().sum()}` ({series.isnull().mean():.2%})\n"
if pd.api.types.is_numeric_dtype(series):
stats_md += f"- **Mean:** `{series.mean():.3f}` | **Median:** `{series.median():.3f}` | **Std Dev:** `{series.std():.3f}`"
fig = create_histogram(analyzer, col)
else:
stats_md += f"- **Top Value:** `{series.value_counts().index[0]}`"
top_n = series.value_counts().nlargest(10)
fig = px.bar(top_n, y=top_n.index, x=top_n.values, orientation='h', title=f"<b>Top 10 Categories in `{col}`</b>").update_yaxes(categoryorder="total ascending")
return stats_md, fig
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue"), title=Config.APP_TITLE) as demo:
state_analyzer = gr.State()
gr.Markdown(f"<h1>{Config.APP_TITLE}</h1>")
gr.Markdown("Upload your data to receive a complete standard analysis, plus specialized dashboards that unlock automatically based on your data's content.")
with gr.Row():
upload_button = gr.File(label="1. Upload Data File (CSV, Excel)", file_types=[".csv", ".xlsx", ".xls"], scale=3)
api_key_input = gr.Textbox(label="2. Enter Google Gemini API Key", type="password", scale=2)
analyze_button = gr.Button("β¨ Build My Dashboard", variant="primary", scale=1)
with gr.Tabs():
with gr.Tab("π€ AI Narrative"):
ai_report_output = gr.Markdown("### Your AI-generated report will appear here...")
with gr.Tab("π Profile"):
profile_missing_df, profile_numeric_df, profile_categorical_df = gr.DataFrame(), gr.DataFrame(), gr.DataFrame()
with gr.Tab("π Overview Visuals"):
with gr.Row(): plot_types, plot_missing = gr.Plot(), gr.Plot()
plot_correlation = gr.Plot()
with gr.Tab("π¨ Interactive Explorer"):
with gr.Row():
with gr.Column(scale=1): dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True)
with gr.Column(scale=2): plot_histogram = gr.Plot()
with gr.Row():
with gr.Column(scale=1):
dd_scatter_x = gr.Dropdown(label="X-Axis (Numeric)", interactive=True)
dd_scatter_y = gr.Dropdown(label="Y-Axis (Numeric)", interactive=True)
dd_scatter_color = gr.Dropdown(label="Color By (Optional)", interactive=True)
with gr.Column(scale=2): plot_scatter = gr.Plot()
with gr.Tab("π Column Deep-Dive"):
dd_drilldown_col = gr.Dropdown(label="Select Column to Analyze", interactive=True)
with gr.Row(): md_drilldown_stats, plot_drilldown = gr.Markdown(), gr.Plot()
with gr.Tab("β Time-Series Analysis", visible=False) as tab_timeseries:
with gr.Row():
dd_ts_date = gr.Dropdown(label="Select Date/Time Column", interactive=True)
dd_ts_value = gr.Dropdown(label="Select Value Column", interactive=True)
plot_ts_decomp, md_ts_stats = gr.Plot(), gr.Markdown()
with gr.Tab("π Text Analysis", visible=False) as tab_text:
dd_text_col = gr.Dropdown(label="Select Text Column", interactive=True)
html_word_cloud = gr.HTML()
with gr.Tab("π§© Clustering (K-Means)", visible=False) as tab_cluster:
num_clusters = gr.Slider(minimum=2, maximum=10, value=4, step=1, label="Number of Clusters (K)", interactive=True)
plot_cluster, md_cluster_summary = gr.Plot(), gr.Markdown()
main_outputs = [
state_analyzer, ai_report_output,
profile_missing_df, profile_numeric_df, profile_categorical_df,
plot_types, plot_missing, plot_correlation,
dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, dd_drilldown_col,
tab_timeseries, dd_ts_date, dd_ts_value,
tab_text, dd_text_col,
tab_cluster, num_clusters]
analyze_button.click(fn=run_full_analysis, inputs=[upload_button, api_key_input], outputs=main_outputs, show_progress="full")
dd_hist_col.change(fn=create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=plot_histogram)
scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color]
for dd in [dd_scatter_x, dd_scatter_y, dd_scatter_color]: dd.change(fn=create_scatterplot, inputs=scatter_inputs, outputs=plot_scatter)
dd_drilldown_col.change(fn=analyze_single_column, inputs=[state_analyzer, dd_drilldown_col], outputs=[md_drilldown_stats, plot_drilldown])
ts_inputs = [state_analyzer, dd_ts_date, dd_ts_value]
for dd in [dd_ts_date, dd_ts_value]: dd.change(fn=lambda a, d, v: analyze_time_series(a.df, d, v), inputs=ts_inputs, outputs=[plot_ts_decomp, md_ts_stats])
dd_text_col.change(fn=lambda a, t: generate_word_cloud(a.df, t), inputs=[state_analyzer, dd_text_col], outputs=html_word_cloud)
num_clusters.change(fn=lambda a, k: perform_clustering(a.df, a.metadata['numeric_cols'], k), inputs=[state_analyzer, num_clusters], outputs=[plot_cluster, md_cluster_summary])
return demo
# --- Main Application Logic & Orchestration ---
def run_full_analysis(file_obj: gr.File, api_key: str) -> list:
if file_obj is None: raise gr.Error("CRITICAL: No file uploaded.")
if not api_key: raise gr.Error("CRITICAL: Gemini API key is missing.")
try:
logging.info(f"Processing uploaded file: {file_obj.name}")
df = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name)
if len(df) > Config.MAX_UI_ROWS: df = df.sample(n=Config.MAX_UI_ROWS, random_state=42)
analyzer = DataAnalyzer(df)
meta = analyzer.metadata
ai_context = {'is_timeseries': bool(meta['datetime_cols']), 'has_text': bool(meta['text_cols'])}
ai_report = analyzer.generate_ai_narrative(api_key, context=ai_context)
missing_df, num_df, cat_df = analyzer.get_profiling_tables()
fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
update_hist_dd = gr.Dropdown(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None)
update_scatter_x = gr.Dropdown(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None)
update_scatter_y = gr.Dropdown(choices=meta['numeric_cols'], value=meta['numeric_cols'][1] if len(meta['numeric_cols']) > 1 else None)
update_scatter_color = gr.Dropdown(choices=meta['columns'])
update_drill_dd = gr.Dropdown(choices=meta['columns'])
show_ts_tab = gr.Tab(visible=bool(meta['datetime_cols']))
update_ts_date_dd, update_ts_value_dd = gr.Dropdown(choices=meta['datetime_cols']), gr.Dropdown(choices=meta['numeric_cols'])
show_text_tab, update_text_dd = gr.Tab(visible=bool(meta['text_cols'])), gr.Dropdown(choices=meta['text_cols'])
show_cluster_tab, update_cluster_slider = gr.Tab(visible=len(meta['numeric_cols']) > 1), gr.Slider(visible=len(meta['numeric_cols']) > 1)
return [analyzer, ai_report, missing_df, num_df, cat_df, fig_types, fig_missing, fig_corr,
update_hist_dd, update_scatter_x, update_scatter_y, update_scatter_color, update_drill_dd,
show_ts_tab, update_ts_date_dd, update_ts_value_dd,
show_text_tab, update_text_dd,
show_cluster_tab, update_cluster_slider]
except Exception as e:
logging.error(f"A critical error occurred: {e}", exc_info=True)
raise gr.Error(f"Analysis Failed! Error: {str(e)}")
if __name__ == "__main__":
app_instance = create_ui()
app_instance.launch(debug=True, server_name="0.0.0.0") |