File size: 17,911 Bytes
60da408
c9ba3ae
0d6622c
c9ba3ae
6eb2933
 
 
 
0d6622c
 
c9ba3ae
 
f9d0aef
 
c9ba3ae
60da408
 
 
 
 
c9ba3ae
f9d0aef
c9ba3ae
 
c08faed
c9ba3ae
c08faed
60da408
b5fce9d
60da408
f9d0aef
0d6622c
 
6eb2933
0d6622c
c9ba3ae
60da408
c9ba3ae
0d6622c
c9ba3ae
6eb2933
c9ba3ae
f9d0aef
60da408
f9d0aef
60da408
0d6622c
60da408
 
c9ba3ae
60da408
 
 
0d6622c
60da408
b5fce9d
60da408
 
 
 
0d6622c
f9d0aef
0d6622c
60da408
 
 
 
c9ba3ae
6eb2933
0d6622c
60da408
4b2fe64
 
0d6622c
c9ba3ae
60da408
c9ba3ae
60da408
 
 
c9ba3ae
6eb2933
 
 
 
 
 
 
60da408
c9ba3ae
6eb2933
 
 
 
 
 
 
 
 
 
c9ba3ae
0d6622c
f9d0aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb2933
 
c9ba3ae
6eb2933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6622c
 
c9ba3ae
 
6eb2933
c9ba3ae
6eb2933
4b2fe64
0d6622c
 
1b21942
 
0d6622c
 
6eb2933
0d6622c
 
c9ba3ae
6eb2933
 
f9d0aef
 
6eb2933
 
 
 
 
f9d0aef
6eb2933
 
f9d0aef
0d6622c
c9ba3ae
0d6622c
 
6eb2933
0d6622c
 
 
 
6eb2933
 
0d6622c
 
6eb2933
0d6622c
 
6eb2933
0d6622c
 
f9d0aef
6eb2933
 
 
f9d0aef
6eb2933
0d6622c
f9d0aef
0d6622c
6eb2933
0d6622c
c9ba3ae
0d6622c
4b2fe64
0d6622c
 
60da408
c9ba3ae
0d6622c
f9d0aef
6eb2933
0d6622c
 
6eb2933
c9ba3ae
 
60da408
f9d0aef
 
 
 
 
6eb2933
f9d0aef
 
 
 
 
 
 
 
 
 
60da408
0d6622c
 
60da408
 
c9ba3ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-
#
# PROJECT:      CognitiveEDA - The Adaptive Intelligence Engine
#
# DESCRIPTION:  A world-class data discovery platform that provides a complete suite
#               of standard EDA tools and intelligently unlocks specialized analysis
#               modules for Time-Series, Text, and Clustering, offering a truly
#               comprehensive and context-aware analytical experience.
#
# SETUP:        $ pip install -r requirements.txt
#
# AUTHOR:       An MCP Expert in Data & AI Solutions
# VERSION:      4.2 (Bugfix Edition: AI Narrative Engine Restored)
# LAST-UPDATE:  2023-10-29 (Fixed critical bug where AI was not being called)

from __future__ import annotations

import warnings
import logging
import os
from datetime import datetime
from typing import Any, Dict, Optional, Tuple

import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai

# --- Local Adaptive Modules (Requires analysis_modules.py and requirements.txt) ---
from analysis_modules import analyze_time_series, generate_word_cloud, perform_clustering

# --- Configuration & Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s')
warnings.filterwarnings('ignore', category=FutureWarning)

class Config:
    APP_TITLE = "πŸš€ CognitiveEDA: The Adaptive Intelligence Engine"
    GEMINI_MODEL = 'gemini-1.5-flash-latest'
    MAX_UI_ROWS = 50000

# --- Core Analysis Engine ---
class DataAnalyzer:
    """The complete DataAnalyzer class, now with a fully functional AI engine."""
    def __init__(self, df: pd.DataFrame):
        if not isinstance(df, pd.DataFrame): raise TypeError("Input must be a pandas DataFrame.")
        self.df = df
        self._metadata: Optional[Dict[str, Any]] = None
        logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}")

    @property
    def metadata(self) -> Dict[str, Any]:
        if self._metadata is None: self._metadata = self._extract_metadata()
        return self._metadata

    def _extract_metadata(self) -> Dict[str, Any]:
        rows, cols = self.df.shape
        numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist()
        categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist()
        datetime_cols = self.df.select_dtypes(include=['datetime64', 'datetimetz']).columns.tolist()
        text_cols = [col for col in categorical_cols if self.df[col].dropna().str.len().mean() > 50]

        high_corr_pairs = []
        if len(numeric_cols) > 1:
            corr_matrix = self.df[numeric_cols].corr().abs()
            upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
            high_corr_series = upper_tri.stack()
            high_corr_pairs = (high_corr_series[high_corr_series > 0.75].reset_index().rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'}).to_dict('records'))

        return {
            'shape': (rows, cols), 'columns': self.df.columns.tolist(),
            'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
            'datetime_cols': datetime_cols, 'text_cols': text_cols,
            'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}",
            'total_missing': int(self.df.isnull().sum().sum()),
            'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2),
            'high_corr_pairs': high_corr_pairs,
        }

    def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
        missing = self.df.isnull().sum()
        missing_df = pd.DataFrame({'Missing Count': missing, 'Missing Percentage (%)': (missing / len(self.df) * 100).round(2)}).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Count', ascending=False)
        numeric_stats = self.df[self.metadata['numeric_cols']].describe(percentiles=[.01, .25, .5, .75, .99]).T
        numeric_stats_df = numeric_stats.round(3).reset_index().rename(columns={'index': 'Column'})
        cat_stats = self.df[self.metadata['categorical_cols']].describe(include=['object', 'category']).T
        cat_stats_df = cat_stats.reset_index().rename(columns={'index': 'Column'})
        return missing_df, numeric_stats_df, cat_stats_df

    def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]:
        meta = self.metadata
        dtype_counts = self.df.dtypes.astype(str).value_counts()
        fig_types = px.pie(values=dtype_counts.values, names=dtype_counts.index, title="<b>πŸ“Š Data Type Composition</b>", hole=0.4, color_discrete_sequence=px.colors.qualitative.Pastel)
        missing_df = self.df.isnull().sum().reset_index(name='count').query('count > 0')
        fig_missing = px.bar(missing_df, x='index', y='count', title="<b>πŸ•³οΈ Missing Values Distribution</b>", labels={'index': 'Column Name', 'count': 'Number of Missing Values'}).update_xaxes(categoryorder="total descending")
        fig_corr = go.Figure()
        if len(meta['numeric_cols']) > 1:
            corr_matrix = self.df[meta['numeric_cols']].corr()
            fig_corr = px.imshow(corr_matrix, text_auto=".2f", aspect="auto", title="<b>πŸ”— Correlation Matrix</b>", color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
        return fig_types, fig_missing, fig_corr

    def generate_ai_narrative(self, api_key: str, context: Dict[str, Any]) -> str:
        """Generates a context-aware AI narrative using the Gemini API."""
        logging.info(f"Generating AI narrative with context: {list(context.keys())}")
        meta = self.metadata
        data_snippet_md = self.df.head(5).to_markdown(index=False)
        
        context_prompt = "**PRIMARY ANALYSIS MODES:**\n"
        if context.get('is_timeseries'):
            context_prompt += "- **Time-Series Detected:** Focus on trends, seasonality, and stationarity. Suggest forecasting models.\n"
        if context.get('has_text'):
            context_prompt += "- **Long-Form Text Detected:** Note potential for NLP tasks like sentiment analysis or topic modeling.\n"
        if not context.get('is_timeseries') and not context.get('has_text'):
            context_prompt += "- **General Tabular Data:** Focus on distributions, correlations, and potential for classification/regression modeling.\n"

        prompt = f"""
        As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive, multi-part data discovery report in Markdown format.
        
        {context_prompt}
        **DATASET METADATA:**
        - **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns.
        - **Data Quality Score:** {meta['data_quality_score']}%
        - **Total Missing Values:** {meta['total_missing']:,}
        - **Highly Correlated Pairs:** {meta['high_corr_pairs'] if meta['high_corr_pairs'] else 'None detected.'}
        - **Data Snippet (First 5 Rows):**
        {data_snippet_md}

        **REQUIRED REPORT STRUCTURE:**

        # πŸš€ AI Data Discovery Report

        ## πŸ“„ 1. Executive Summary
        *   **Primary Objective:** (Deduce the likely purpose of this dataset. What problem could it solve?)
        *   **Key Finding:** (State the single most interesting insight you've discovered.)
        *   **Overall State:** (Briefly comment on the data's quality and readiness for analysis.)

        ## 🧐 2. Deep Dive & Quality Assessment
        *   **Structural Profile:** (Describe the dataset's composition: numeric, categorical, text, time-series features.)
        *   **Data Quality Audit:** (Elaborate on the quality score and missing values. Are they a major concern?)
        *   **Redundancy Check:** (Comment on the detected high-correlation pairs and any risks.)

        ## πŸ’‘ 3. Actionable Recommendations
        *   **Data Cleaning:** (Provide a specific recommendation for handling missing data or outliers.)
        *   **Feature Engineering:** (Suggest creating a new, valuable feature.)
        *   **Next Analytical Steps:** (Propose a specific hypothesis to test or a suitable ML model to build.)
        """
        try:
            genai.configure(api_key=api_key)
            model = genai.GenerativeModel(Config.GEMINI_MODEL)
            response = model.generate_content(prompt)
            if not response.parts:
                blocked_reason = response.prompt_feedback.block_reason.name if response.prompt_feedback else "Unknown"
                logging.warning(f"AI response blocked. Reason: {blocked_reason}")
                return f"❌ **AI Report Generation Blocked by Safety Settings**\n**Reason:** `{blocked_reason}`."
            return response.text
        except Exception as e:
            logging.error(f"Gemini API call failed: {e}", exc_info=True)
            return f"❌ **AI Report Generation Failed**\n**Error:** `{str(e)}`"

# --- UI Creation ---
def create_ui():
    """Defines the complete, integrated Gradio user interface."""
    def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure:
        if not col or not analyzer: return go.Figure()
        return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box", template="plotly_white")
    def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col:str, color_col:str) -> go.Figure:
        if not all([analyzer, x_col, y_col]): return go.Figure()
        return px.scatter(analyzer.df, x=x_col, y=y_col, color=color_col, title=f"<b>Scatter Plot: {x_col} vs. {y_col}</b>", template="plotly_white")
    def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]:
        if not col or not analyzer: return "", go.Figure()
        series = analyzer.df[col]
        stats_md = f"### πŸ”Ž **Deep Dive: `{col}`**\n- **Data Type:** `{series.dtype}`\n- **Unique Values:** `{series.nunique()}`\n- **Missing:** `{series.isnull().sum()}` ({series.isnull().mean():.2%})\n"
        if pd.api.types.is_numeric_dtype(series):
            stats_md += f"- **Mean:** `{series.mean():.3f}` | **Median:** `{series.median():.3f}` | **Std Dev:** `{series.std():.3f}`"
            fig = create_histogram(analyzer, col)
        else:
            stats_md += f"- **Top Value:** `{series.value_counts().index[0]}`"
            top_n = series.value_counts().nlargest(10)
            fig = px.bar(top_n, y=top_n.index, x=top_n.values, orientation='h', title=f"<b>Top 10 Categories in `{col}`</b>").update_yaxes(categoryorder="total ascending")
        return stats_md, fig

    with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue"), title=Config.APP_TITLE) as demo:
        state_analyzer = gr.State()
        gr.Markdown(f"<h1>{Config.APP_TITLE}</h1>")
        gr.Markdown("Upload your data to receive a complete standard analysis, plus specialized dashboards that unlock automatically based on your data's content.")
        with gr.Row():
            upload_button = gr.File(label="1. Upload Data File (CSV, Excel)", file_types=[".csv", ".xlsx", ".xls"], scale=3)
            api_key_input = gr.Textbox(label="2. Enter Google Gemini API Key", type="password", scale=2)
            analyze_button = gr.Button("✨ Build My Dashboard", variant="primary", scale=1)

        with gr.Tabs():
            with gr.Tab("πŸ€– AI Narrative"):
                ai_report_output = gr.Markdown("### Your AI-generated report will appear here...")
            with gr.Tab("πŸ“‹ Profile"):
                profile_missing_df, profile_numeric_df, profile_categorical_df = gr.DataFrame(), gr.DataFrame(), gr.DataFrame()
            with gr.Tab("πŸ“Š Overview Visuals"):
                with gr.Row(): plot_types, plot_missing = gr.Plot(), gr.Plot()
                plot_correlation = gr.Plot()
            with gr.Tab("🎨 Interactive Explorer"):
                with gr.Row():
                    with gr.Column(scale=1): dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True)
                    with gr.Column(scale=2): plot_histogram = gr.Plot()
                with gr.Row():
                    with gr.Column(scale=1):
                        dd_scatter_x = gr.Dropdown(label="X-Axis (Numeric)", interactive=True)
                        dd_scatter_y = gr.Dropdown(label="Y-Axis (Numeric)", interactive=True)
                        dd_scatter_color = gr.Dropdown(label="Color By (Optional)", interactive=True)
                    with gr.Column(scale=2): plot_scatter = gr.Plot()
            with gr.Tab("πŸ” Column Deep-Dive"):
                dd_drilldown_col = gr.Dropdown(label="Select Column to Analyze", interactive=True)
                with gr.Row(): md_drilldown_stats, plot_drilldown = gr.Markdown(), gr.Plot()
            with gr.Tab("βŒ› Time-Series Analysis", visible=False) as tab_timeseries:
                with gr.Row():
                    dd_ts_date = gr.Dropdown(label="Select Date/Time Column", interactive=True)
                    dd_ts_value = gr.Dropdown(label="Select Value Column", interactive=True)
                plot_ts_decomp, md_ts_stats = gr.Plot(), gr.Markdown()
            with gr.Tab("πŸ“ Text Analysis", visible=False) as tab_text:
                dd_text_col = gr.Dropdown(label="Select Text Column", interactive=True)
                html_word_cloud = gr.HTML()
            with gr.Tab("🧩 Clustering (K-Means)", visible=False) as tab_cluster:
                num_clusters = gr.Slider(minimum=2, maximum=10, value=4, step=1, label="Number of Clusters (K)", interactive=True)
                plot_cluster, md_cluster_summary = gr.Plot(), gr.Markdown()

        main_outputs = [
            state_analyzer, ai_report_output,
            profile_missing_df, profile_numeric_df, profile_categorical_df,
            plot_types, plot_missing, plot_correlation,
            dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, dd_drilldown_col,
            tab_timeseries, dd_ts_date, dd_ts_value,
            tab_text, dd_text_col,
            tab_cluster, num_clusters]
        analyze_button.click(fn=run_full_analysis, inputs=[upload_button, api_key_input], outputs=main_outputs, show_progress="full")
        dd_hist_col.change(fn=create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=plot_histogram)
        scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color]
        for dd in [dd_scatter_x, dd_scatter_y, dd_scatter_color]: dd.change(fn=create_scatterplot, inputs=scatter_inputs, outputs=plot_scatter)
        dd_drilldown_col.change(fn=analyze_single_column, inputs=[state_analyzer, dd_drilldown_col], outputs=[md_drilldown_stats, plot_drilldown])
        ts_inputs = [state_analyzer, dd_ts_date, dd_ts_value]
        for dd in [dd_ts_date, dd_ts_value]: dd.change(fn=lambda a, d, v: analyze_time_series(a.df, d, v), inputs=ts_inputs, outputs=[plot_ts_decomp, md_ts_stats])
        dd_text_col.change(fn=lambda a, t: generate_word_cloud(a.df, t), inputs=[state_analyzer, dd_text_col], outputs=html_word_cloud)
        num_clusters.change(fn=lambda a, k: perform_clustering(a.df, a.metadata['numeric_cols'], k), inputs=[state_analyzer, num_clusters], outputs=[plot_cluster, md_cluster_summary])
    return demo

# --- Main Application Logic & Orchestration ---
def run_full_analysis(file_obj: gr.File, api_key: str) -> list:
    if file_obj is None: raise gr.Error("CRITICAL: No file uploaded.")
    if not api_key: raise gr.Error("CRITICAL: Gemini API key is missing.")
    try:
        logging.info(f"Processing uploaded file: {file_obj.name}")
        df = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name)
        if len(df) > Config.MAX_UI_ROWS: df = df.sample(n=Config.MAX_UI_ROWS, random_state=42)
        analyzer = DataAnalyzer(df)
        meta = analyzer.metadata
        ai_context = {'is_timeseries': bool(meta['datetime_cols']), 'has_text': bool(meta['text_cols'])}
        ai_report = analyzer.generate_ai_narrative(api_key, context=ai_context)
        missing_df, num_df, cat_df = analyzer.get_profiling_tables()
        fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
        
        update_hist_dd = gr.Dropdown(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None)
        update_scatter_x = gr.Dropdown(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None)
        update_scatter_y = gr.Dropdown(choices=meta['numeric_cols'], value=meta['numeric_cols'][1] if len(meta['numeric_cols']) > 1 else None)
        update_scatter_color = gr.Dropdown(choices=meta['columns'])
        update_drill_dd = gr.Dropdown(choices=meta['columns'])
        
        show_ts_tab = gr.Tab(visible=bool(meta['datetime_cols']))
        update_ts_date_dd, update_ts_value_dd = gr.Dropdown(choices=meta['datetime_cols']), gr.Dropdown(choices=meta['numeric_cols'])
        show_text_tab, update_text_dd = gr.Tab(visible=bool(meta['text_cols'])), gr.Dropdown(choices=meta['text_cols'])
        show_cluster_tab, update_cluster_slider = gr.Tab(visible=len(meta['numeric_cols']) > 1), gr.Slider(visible=len(meta['numeric_cols']) > 1)

        return [analyzer, ai_report, missing_df, num_df, cat_df, fig_types, fig_missing, fig_corr,
                update_hist_dd, update_scatter_x, update_scatter_y, update_scatter_color, update_drill_dd,
                show_ts_tab, update_ts_date_dd, update_ts_value_dd,
                show_text_tab, update_text_dd,
                show_cluster_tab, update_cluster_slider]
    except Exception as e:
        logging.error(f"A critical error occurred: {e}", exc_info=True)
        raise gr.Error(f"Analysis Failed! Error: {str(e)}")

if __name__ == "__main__":
    app_instance = create_ui()
    app_instance.launch(debug=True, server_name="0.0.0.0")