PhoenixUI / app.py
mgbam's picture
Update app.py
272b87c verified
raw
history blame
17.9 kB
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import io
import json
import warnings
import google.generativeai as genai
import os
from contextlib import redirect_stdout
# --- Configuration ---
warnings.filterwarnings('ignore')
# --- Expert-Crafted Dark Theme CSS ---
CSS = """
/* --- Phoenix UI Custom Dark CSS --- */
/* Stat Card Styling */
.stat-card {
border-radius: 12px !important;
padding: 20px !important;
background: #1f2937 !important; /* Dark blue-gray background */
border: 1px solid #374151 !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
text-align: center;
}
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
.stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; }
/* General Layout & Feel */
.gradio-container { font-family: 'Inter', sans-serif; }
.gr-button { box-shadow: 0 1px 2px 0 rgba(0,0,0,0.05); }
/* Sidebar Styling */
.sidebar {
background-color: #111827 !important; /* Very dark blue-gray */
padding: 15px;
border-right: 1px solid #374151 !important;
min-height: 100vh;
}
.sidebar .gr-button {
width: 100%;
text-align: left !important;
background: none !important;
border: none !important;
box-shadow: none !important;
color: #d1d5db !important; /* Light gray text for readability */
font-size: 16px !important;
padding: 12px 10px !important;
margin-bottom: 8px !important;
border-radius: 8px !important;
}
.sidebar .gr-button:hover { background-color: #374151 !important; } /* Hover state */
.sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; } /* Selected state with primary color */
/* AI Co-pilot Styling */
.code-block { border: 1px solid #374151 !important; border-radius: 8px; }
.explanation-block {
background-color: #1e3a8a !important; /* Dark blue background */
border-left: 4px solid #3b82f6 !important; /* Brighter blue border */
padding: 12px;
color: #e5e7eb !important;
}
"""
# --- Helper and Core Functions (Unchanged) ---
def safe_exec(code_string: str, local_vars: dict):
output_buffer = io.StringIO()
try:
with redirect_stdout(output_buffer):
exec(code_string, globals(), local_vars)
stdout = output_buffer.getvalue()
fig = local_vars.get('fig')
result_df = local_vars.get('result_df')
return stdout, fig, result_df, None
except Exception as e:
return None, None, None, f"Execution Error: {str(e)}"
def load_and_process_file(file_obj, state_dict):
if file_obj is None: return state_dict, "Please upload a file.", *[gr.update(visible=False)] * 4
try:
df = pd.read_csv(file_obj.name, low_memory=False)
for col in df.select_dtypes(include=['object']).columns:
try: df[col] = pd.to_datetime(df[col], errors='raise')
except (ValueError, TypeError): continue
metadata = extract_dataset_metadata(df)
state_dict = {'df': df, 'metadata': metadata, 'filename': os.path.basename(file_obj.name), 'dashboard_plots': []}
status_msg = f"βœ… **{state_dict['filename']}** loaded successfully."
cockpit_update = gr.update(visible=True)
welcome_update = gr.update(visible=False)
rows, cols = metadata['shape']
quality = metadata['data_quality']
return (state_dict, status_msg, welcome_update, cockpit_update, gr.update(visible=False), gr.update(visible=False),
gr.update(value=f"{rows:,}"), gr.update(value=cols), gr.update(value=f"{quality}%"), gr.update(value=f"{len(metadata['datetime_cols'])}"),
gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']), gr.update(choices=metadata['columns']))
except Exception as e:
return state_dict, f"❌ **Error:** {e}", *[gr.update()] * 11
def extract_dataset_metadata(df: pd.DataFrame):
rows, cols = df.shape
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist()
data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
'datetime_cols': datetime_cols, 'dtypes': df.dtypes.to_string(), 'head': df.head().to_string(), 'data_quality': data_quality}
def switch_page(page_name):
return (gr.update(visible=page_name=="cockpit"), gr.update(visible=page_name=="deep_dive"), gr.update(visible=page_name=="co-pilot"))
def get_ai_suggestions(state_dict, api_key):
if not api_key: return "Enter your Gemini API key to get suggestions.", *[gr.update(visible=False)]*5
if not state_dict: return "Upload data first.", *[gr.update(visible=False)]*5
metadata = state_dict['metadata']
prompt = f"""
Based on the following dataset metadata, generate 3 to 5 specific, actionable, and interesting analytical questions...
Return ONLY a JSON list of strings. Example: ["What is the trend of sales over time?", "Which category has the highest average price?"]
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
suggestions = json.loads(response.text)
buttons = [gr.Button(s, variant="secondary", visible=True) for s in suggestions]
buttons += [gr.Button(visible=False)] * (5 - len(buttons))
return gr.update(visible=False), *buttons
except Exception as e: return f"Could not generate suggestions: {e}", *[gr.update(visible=False)]*5
def handle_suggestion_click(question_text):
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question_text)
def add_plot_to_dashboard(state_dict, x_col, y_col, plot_type):
if not x_col:
gr.Warning("Please select at least an X-axis column.")
return state_dict, state_dict.get('dashboard_plots', [])
df = state_dict['df']
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}"
fig = None
try:
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols")
elif plot_type == 'bar':
counts = df[x_col].value_counts().nlargest(20)
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}")
fig.update_xaxes(title=x_col)
if fig:
fig.update_layout(template="plotly_dark")
state_dict['dashboard_plots'].append(fig)
return state_dict, state_dict['dashboard_plots']
except Exception as e:
gr.Warning(f"Plotting Error: {e}")
return state_dict, state_dict.get('dashboard_plots', [])
def clear_dashboard(state_dict):
state_dict['dashboard_plots'] = []
return state_dict, []
def respond_to_chat(user_message, history, state_dict, api_key):
if not api_key:
history.append((user_message, "I need a Gemini API key to function..."))
return history, *[gr.update(visible=False)] * 4
if not state_dict:
history.append((user_message, "Please upload a dataset first."))
return history, *[gr.update(visible=False)] * 4
history.append((user_message, None))
metadata = state_dict['metadata']
prompt = f"""
You are 'Phoenix Co-pilot', an expert AI data analyst... [Prompt remains the same]
**User Question:** "{user_message}"
**Your JSON Response:**
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
response_json = json.loads(response.text.strip().replace("```json", "").replace("```", ""))
thought = response_json.get("thought", "Thinking...")
code_to_run = response_json.get("code", "")
explanation = response_json.get("explanation", "Here is the result.")
stdout, fig_result, df_result, error = safe_exec(code_to_run, {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np})
history[-1] = (user_message, f"πŸ€” **Thought:** *{thought}*")
output_updates = [gr.update(visible=False, value=None)] * 4
if explanation: output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** {explanation}")
if code_to_run: output_updates[1] = gr.update(visible=True, value=code_to_run)
if fig_result: output_updates[2] = gr.update(visible=True, value=fig_result)
if df_result is not None: output_updates[3] = gr.update(visible=True, value=df_result)
if stdout:
new_explanation = (output_updates[0]['value'] if output_updates[0]['visible'] else "") + f"\n\n**Console Output:**\n```\n{stdout}\n```"
output_updates[0] = gr.update(visible=True, value=new_explanation)
if error:
output_updates[0] = gr.update(visible=True, value=f"**Phoenix Co-pilot:** I encountered an error. Here's the details:\n\n`{error}`")
return history, *output_updates
except Exception as e:
history[-1] = (user_message, f"A critical error occurred: {e}.")
return history, *[gr.update(visible=False)] * 4
# --- Gradio UI Definition ---
def create_gradio_interface():
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Phoenix AI Data Explorer") as demo:
global_state = gr.State({})
# --- CORRECTED: "Define-Then-Place" Pattern ---
# 1. DEFINE all interactive components first.
# Sidebar components
cockpit_btn = gr.Button("πŸ“Š Data Cockpit", elem_classes="selected")
deep_dive_btn = gr.Button("πŸ” Deep Dive Builder")
copilot_btn = gr.Button("πŸ€– AI Co-pilot")
file_input = gr.File(label="πŸ“ Upload New CSV", file_types=[".csv"])
status_output = gr.Markdown("Status: Awaiting data...")
api_key_input = gr.Textbox(label="πŸ”‘ Gemini API Key", type="password", placeholder="Enter key here...")
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary")
# Cockpit page components
rows_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value", interactive=False)
cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value", interactive=False)
quality_stat = gr.Textbox("0%", show_label=False, elem_classes="stat-card-value", interactive=False)
time_cols_stat = gr.Textbox("0", show_label=False, elem_classes="stat-card-value", interactive=False)
suggestion_status = gr.Markdown(visible=True)
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
# Deep Dive page components
plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
x_col_dd = gr.Dropdown([], label="X-Axis / Column")
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)")
add_plot_btn = gr.Button("Add to Dashboard", variant="primary")
clear_plots_btn = gr.Button("Clear Dashboard")
dashboard_gallery = gr.Gallery(label="πŸ“Š Your Custom Dashboard", height="auto", columns=2, preview=True)
# Co-pilot page components
chatbot = gr.Chatbot(height=400, label="Conversation with Co-pilot", show_copy_button=True)
copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
copilot_code = gr.Code(language="python", visible=False, label="Executed Python Code")
copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True)
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the correlation between age and salary?'", scale=4)
chat_submit_btn = gr.Button("Submit", variant="primary")
# 2. PLACE the defined components into the layout.
with gr.Row():
# Sidebar Layout
with gr.Column(scale=1, elem_classes="sidebar"):
gr.Markdown("## πŸš€ Phoenix UI")
cockpit_btn
deep_dive_btn
copilot_btn
gr.Markdown("---")
file_input
status_output
gr.Markdown("---")
api_key_input
suggestion_btn
# Main Content Layout
with gr.Column(scale=4):
with gr.Column(visible=True) as welcome_page:
gr.Markdown("# Welcome to the AI Data Explorer (Phoenix UI)")
gr.Markdown("Please **upload a CSV file** and **enter your Gemini API key** in the sidebar to begin.")
gr.Image(value="workflow.png", show_label=False, show_download_button=False, container=False)
with gr.Column(visible=False) as cockpit_page:
gr.Markdown("## πŸ“Š Data Cockpit")
with gr.Row():
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Rows</div>"); rows_stat
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Columns</div>"); cols_stat
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); quality_stat
with gr.Column(elem_classes="stat-card"):
gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); time_cols_stat
suggestion_status
with gr.Accordion(label="✨ AI Smart Suggestions", open=True):
for btn in suggestion_buttons:
btn
with gr.Column(visible=False) as deep_dive_page:
gr.Markdown("## πŸ” Deep Dive Dashboard Builder")
gr.Markdown("Create a custom dashboard by adding multiple plots to the gallery below.")
with gr.Row():
plot_type_dd; x_col_dd; y_col_dd
with gr.Row():
add_plot_btn; clear_plots_btn
dashboard_gallery
with gr.Column(visible=False) as copilot_page:
gr.Markdown("## πŸ€– AI Co-pilot")
chatbot
with gr.Accordion("Co-pilot's Response Details", open=True):
copilot_explanation; copilot_code; copilot_plot; copilot_table
with gr.Row():
chat_input; chat_submit_btn
# 3. DEFINE all event handlers. Now all component variables are guaranteed to exist.
pages = [cockpit_page, deep_dive_page, copilot_page]
nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn]
for i, btn in enumerate(nav_buttons):
page_name = btn.value.lower().replace(" ", "_").split(" ")[-1]
btn.click(lambda name=page_name: switch_page(name), outputs=pages) \
.then(lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)
file_input.upload(load_and_process_file, [file_input, global_state],
[global_state, status_output, welcome_page, cockpit_page, deep_dive_page, copilot_page,
rows_stat, cols_stat, quality_stat, time_cols_stat,
x_col_dd, y_col_dd, plot_type_dd]) \
.then(lambda: switch_page("cockpit"), outputs=pages) \
.then(lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
suggestion_btn.click(get_ai_suggestions, [global_state, api_key_input], [suggestion_status, *suggestion_buttons])
for btn in suggestion_buttons:
btn.click(handle_suggestion_click, inputs=[btn], outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input]) \
.then(lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
add_plot_btn.click(add_plot_to_dashboard, [global_state, x_col_dd, y_col_dd, plot_type_dd], [global_state, dashboard_gallery])
clear_plots_btn.click(clear_dashboard, [global_state], [global_state, dashboard_gallery])
chat_submit_btn.click(respond_to_chat, [chat_input, chatbot, global_state, api_key_input],
[chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]) \
.then(lambda: "", outputs=[chat_input])
chat_input.submit(respond_to_chat, [chat_input, chatbot, global_state, api_key_input],
[chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]) \
.then(lambda: "", outputs=[chat_input])
return demo
if __name__ == "__main__":
app = create_gradio_interface()
app.launch(debug=True)