PhoenixUI / app.py
mgbam's picture
Update app.py
4b2fe64 verified
raw
history blame
16.9 kB
# -*- coding: utf-8 -*-
#
# PROJECT: CognitiveEDA - The AI-Augmented Data Discovery Platform
#
# SETUP: This application has external dependencies. Before running, install
# all required packages using the requirements.txt file:
# $ pip install -r requirements.txt
#
# AUTHOR: An MCP Expert in Data & AI Solutions
# VERSION: 3.2 (Enterprise Edition)
# LAST-UPDATE: 2023-10-28 (Fixed NameError scope issue in main analysis function)
from __future__ import annotations
import warnings
import logging
import os
import sys
import importlib.util
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
# --- Configuration & Constants ---
# (No changes here)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s'
)
warnings.filterwarnings('ignore', category=FutureWarning)
class Config:
APP_TITLE = "πŸš€ CognitiveEDA: AI-Augmented Data Discovery Platform"
GEMINI_MODEL = 'gemini-1.5-flash-latest'
CORR_THRESHOLD = 0.75
TOP_N_CATEGORIES = 10
# --- Core Analysis Engine ---
# (No changes here)
class DataAnalyzer:
def __init__(self, df: pd.DataFrame):
if not isinstance(df, pd.DataFrame):
raise TypeError("Input must be a pandas DataFrame.")
self.df = df
self._metadata: Optional[Dict[str, Any]] = None
logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}")
@property
def metadata(self) -> Dict[str, Any]:
if self._metadata is None:
logging.info("First access to metadata, performing extraction...")
self._metadata = self._extract_metadata()
return self._metadata
def _extract_metadata(self) -> Dict[str, Any]:
rows, cols = self.df.shape
numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist()
high_corr_pairs = []
if len(numeric_cols) > 1:
corr_matrix = self.df[numeric_cols].corr().abs()
upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
high_corr_series = upper_tri.stack()
high_corr_pairs = (
high_corr_series[high_corr_series > Config.CORR_THRESHOLD]
.reset_index()
.rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'})
.to_dict('records')
)
return {
'shape': (rows, cols), 'columns': self.df.columns.tolist(),
'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}",
'total_missing': int(self.df.isnull().sum().sum()),
'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2),
'high_corr_pairs': high_corr_pairs,
}
def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
logging.info("Generating profiling tables for missing, numeric, and categorical data.")
missing = self.df.isnull().sum()
missing_df = pd.DataFrame({
'Missing Count': missing, 'Missing Percentage (%)': (missing / len(self.df) * 100).round(2)
}).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Count', ascending=False)
numeric_stats = self.df[self.metadata['numeric_cols']].describe(percentiles=[.01, .25, .5, .75, .99]).T
numeric_stats_df = numeric_stats.round(3).reset_index().rename(columns={'index': 'Column'})
cat_stats = self.df[self.metadata['categorical_cols']].describe(include=['object', 'category']).T
cat_stats_df = cat_stats.reset_index().rename(columns={'index': 'Column'})
return missing_df, numeric_stats_df, cat_stats_df
def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]:
logging.info("Generating overview visualizations (types, missing data, correlation).")
meta = self.metadata
dtype_counts = self.df.dtypes.astype(str).value_counts()
fig_types = px.pie(values=dtype_counts.values, names=dtype_counts.index, title="<b>πŸ“Š Data Type Composition</b>", hole=0.4, color_discrete_sequence=px.colors.qualitative.Pastel)
fig_types.update_traces(textposition='outside', textinfo='percent+label')
missing_df = self.df.isnull().sum().reset_index(name='count').query('count > 0')
fig_missing = px.bar(missing_df, x='index', y='count', title="<b>πŸ•³οΈ Missing Values Distribution</b>", labels={'index': 'Column Name', 'count': 'Number of Missing Values'}).update_xaxes(categoryorder="total descending")
fig_corr = go.Figure()
if len(meta['numeric_cols']) > 1:
corr_matrix = self.df[meta['numeric_cols']].corr()
fig_corr = px.imshow(corr_matrix, text_auto=".2f", aspect="auto", title=f"<b>πŸ”— Correlation Matrix (Threshold > {Config.CORR_THRESHOLD})</b>", color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
else:
fig_corr.update_layout(title="<b>πŸ”— Correlation Matrix (Insufficient Numeric Data)</b>")
return fig_types, fig_missing, fig_corr
def generate_ai_narrative(self, api_key: str) -> str:
logging.info("Generating AI narrative with the Gemini API.")
meta = self.metadata
data_snippet_md = self.df.head(5).to_markdown(index=False)
prompt = f"""
As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive, multi-part data discovery report.
Analyze the following dataset context and produce a professional, insightful, and clear analysis in Markdown format.
**DATASET CONTEXT:**
- **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns.
- **Column Schema:**
- Numeric: {', '.join(meta['numeric_cols']) if meta['numeric_cols'] else 'None'}
- Categorical: {', '.join(meta['categorical_cols']) if meta['categorical_cols'] else 'None'}
- **Data Quality Score:** {meta['data_quality_score']}% (Percentage of non-missing cells)
- **Total Missing Values:** {meta['total_missing']:,}
- **High-Correlation Pairs (>{Config.CORR_THRESHOLD}):** {meta['high_corr_pairs'] if meta['high_corr_pairs'] else 'None detected.'}
- **Data Snippet (First 5 Rows):**
{data_snippet_md}
**REQUIRED REPORT STRUCTURE (Strictly use this Markdown format):**
...
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(Config.GEMINI_MODEL)
response = model.generate_content(prompt)
return response.text
except Exception as e:
logging.error(f"Gemini API call failed: {e}", exc_info=True)
error_message = ("❌ **AI Report Generation Failed**\n\n" f"**Error Details:** `{str(e)}`\n\n" "**Troubleshooting Steps:**\n" "1. Verify that your Google Gemini API key is correct and active.\n" "2. Check your network connection and firewall settings.\n" "3. Ensure the Gemini API is not experiencing an outage.")
return error_message
# --- Gradio UI & Event Handlers ---
# (No changes here)
def create_ui():
def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure:
if not col or not analyzer: return go.Figure()
return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box", template="plotly_white")
def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col:str, color_col:str) -> go.Figure:
if not all([analyzer, x_col, y_col]): return go.Figure()
return px.scatter(analyzer.df, x=x_col, y=y_col, color=color_col, title=f"<b>Scatter Plot: {x_col} vs. {y_col}</b>", template="plotly_white", color_continuous_scale=px.colors.sequential.Viridis)
def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]:
if not col or not analyzer: return "", go.Figure()
series = analyzer.df[col]
stats_md = f"### πŸ”Ž **Deep Dive: `{col}`**\n- **Data Type:** `{series.dtype}`\n- **Unique Values:** `{series.nunique()}`\n- **Missing:** `{series.isnull().sum()}` ({series.isnull().mean():.2%})\n"
fig = go.Figure()
if pd.api.types.is_numeric_dtype(series):
stats_md += f"- **Mean:** `{series.mean():.3f}` | **Std Dev:** `{series.std():.3f}`\n- **Median:** `{series.median():.3f}` | **Min:** `{series.min():.3f}` | **Max:** `{series.max():.3f}`\n"
fig = create_histogram(analyzer, col)
else:
top_n = series.value_counts().nlargest(Config.TOP_N_CATEGORIES)
stats_md += f"- **Top Value:** `{top_n.index[0]}` ({top_n.iloc[0]} occurrences)\n"
fig = px.bar(top_n, y=top_n.index, x=top_n.values, orientation='h', title=f"<b>Top {Config.TOP_N_CATEGORIES} Categories in `{col}`</b>", labels={'y': col, 'x': 'Count'}, template="plotly_white").update_yaxes(categoryorder="total ascending")
return stats_md, fig
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"), title=Config.APP_TITLE) as demo:
state_analyzer = gr.State()
gr.Markdown(f"<h1>{Config.APP_TITLE}</h1>")
gr.Markdown("Upload a CSV file, provide your Gemini API key, and receive an instant, AI-driven analysis of your data.")
with gr.Row():
upload_button = gr.File(label="1. Upload CSV File", file_types=[".csv"], scale=3)
api_key_input = gr.Textbox(label="2. Enter Google Gemini API Key", type="password", scale=2)
analyze_button = gr.Button("✨ Generate Analysis", variant="primary", scale=1, min_width=150)
with gr.Tabs():
with gr.Tab("πŸ€– AI Narrative"):
ai_report_output = gr.Markdown("Your AI-generated report will appear here...")
download_report_button = gr.Button("⬇️ Download Full Report", visible=False)
with gr.Tab("Profile"):
profile_missing_df = gr.DataFrame(interactive=False, label="Missing Values")
profile_numeric_df = gr.DataFrame(interactive=False, label="Numeric Stats")
profile_categorical_df = gr.DataFrame(interactive=False, label="Categorical Stats")
with gr.Tab("πŸ“ˆ Overview Visuals"):
with gr.Row():
plot_types, plot_missing = gr.Plot(), gr.Plot()
plot_correlation = gr.Plot()
with gr.Tab("🎨 Interactive Explorer"):
with gr.Row(equal_height=False):
with gr.Column(scale=1):
dd_hist_col = gr.Dropdown(label="Select Column for Histogram", visible=False)
with gr.Column(scale=2):
plot_histogram = gr.Plot()
with gr.Row(equal_height=False):
with gr.Column(scale=1):
dd_scatter_x, dd_scatter_y, dd_scatter_color = gr.Dropdown(label="X-Axis (Numeric)", visible=False), gr.Dropdown(label="Y-Axis (Numeric)", visible=False), gr.Dropdown(label="Color By (Optional)", visible=False)
with gr.Column(scale=2):
plot_scatter = gr.Plot()
with gr.Tab("πŸ” Column Deep-Dive"):
dd_drilldown_col = gr.Dropdown(label="Select Column to Analyze", visible=False)
with gr.Row():
md_drilldown_stats, plot_drilldown = gr.Markdown(), gr.Plot()
gr.HTML("""<div style="text-align: center; margin-top: 20px; font-family: sans-serif; color: #777;"><p>πŸ’‘ Need an API key? Get one from <a href="https://aistudio.google.com/app/apikey" target="_blank">Google AI Studio</a>.</p><p>CognitiveEDA v3.2 | An MCP Expert System</p></div>""")
outputs_for_main_analysis = [state_analyzer, ai_report_output, download_report_button, profile_missing_df, profile_numeric_df, profile_categorical_df, plot_types, plot_missing, plot_correlation, dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, dd_drilldown_col]
analyze_button.click(fn=run_full_analysis, inputs=[upload_button, api_key_input], outputs=outputs_for_main_analysis)
dd_hist_col.change(fn=create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=plot_histogram)
scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color]
for dd in [dd_scatter_x, dd_scatter_y, dd_scatter_color]:
dd.change(fn=create_scatterplot, inputs=scatter_inputs, outputs=plot_scatter)
dd_drilldown_col.change(fn=analyze_single_column, inputs=[state_analyzer, dd_drilldown_col], outputs=[md_drilldown_stats, plot_drilldown])
download_report_button.click(fn=download_report_file, inputs=[state_analyzer, ai_report_output], outputs=gr.File(label="Download Report"))
return demo
# --- Main Application Logic ---
### THIS IS THE CORRECTED FUNCTION ###
def run_full_analysis(file_obj: gr.File, api_key: str) -> list:
"""
Orchestrates the entire analysis pipeline upon button click.
Returns a list of values to update all relevant UI components.
"""
if file_obj is None:
raise gr.Error("CRITICAL: No file uploaded. Please select a CSV file.")
if not api_key:
raise gr.Error("CRITICAL: Gemini API key is missing. Please provide your key.")
try:
logging.info(f"Processing uploaded file: {file_obj.name}")
df = pd.read_csv(file_obj.name)
analyzer = DataAnalyzer(df)
ai_report = analyzer.generate_ai_narrative(api_key)
missing_df, num_df, cat_df = analyzer.get_profiling_tables()
fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
meta = analyzer.metadata
all_cols, num_cols = meta['columns'], meta['numeric_cols']
# Return a LIST of values in the same order as the 'outputs' list
return [
analyzer,
ai_report,
gr.Button(visible=True),
missing_df,
num_df,
cat_df,
fig_types,
fig_missing,
fig_corr,
gr.Dropdown(choices=num_cols, label="Select Numeric Column", visible=True),
gr.Dropdown(choices=num_cols, label="X-Axis (Numeric)", visible=True),
gr.Dropdown(choices=num_cols, label="Y-Axis (Numeric)", visible=True),
gr.Dropdown(choices=all_cols, label="Color By (Optional)", visible=True),
gr.Dropdown(choices=all_cols, label="Select Column to Analyze", visible=True)
]
except Exception as e:
logging.error(f"A critical error occurred during file processing: {e}", exc_info=True)
raise gr.Error(f"Analysis Failed! The process stopped due to: {str(e)}")
# (No changes to other functions)
def download_report_file(analyzer: DataAnalyzer, ai_report_text: str) -> Optional[str]:
if not analyzer:
logging.warning("Download attempted without a valid analyzer object.")
return None
filename = f"CognitiveEDA_Report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
meta = analyzer.metadata
full_report = f"# CognitiveEDA - Data Discovery Report\n**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n## Dataset Overview\n- **Shape:** {meta['shape'][0]} rows x {meta['shape'][1]} columns\n- **Memory Footprint:** {meta['memory_usage_mb']} MB\n- **Data Quality Score:** {meta['data_quality_score']}%\n\n---\n\n{ai_report_text}"
with open(filename, "w", encoding="utf-8") as f:
f.write(full_report)
logging.info(f"Report file generated successfully: {filename}")
return filename
def perform_pre_flight_checks():
logging.info("Performing pre-flight dependency checks...")
required_packages = ["pandas", "gradio", "plotly", "google.generativeai", "tabulate"]
missing_packages = [pkg for pkg in required_packages if importlib.util.find_spec(pkg) is None]
if missing_packages:
logging.critical(f"Missing critical packages: {', '.join(missing_packages)}")
print("\n" + "="*80 + "\nERROR: Your environment is missing critical dependencies.\n" + f"Missing package(s): {', '.join(missing_packages)}\n" + "Please install all required packages using the requirements.txt file:\n" + "pip install -r requirements.txt\n" + "="*80 + "\n")
sys.exit(1)
logging.info("All dependencies are satisfied. Proceeding with launch.")
if __name__ == "__main__":
perform_pre_flight_checks()
app_instance = create_ui()
app_instance.launch(debug=True, server_name="0.0.0.0")