File size: 16,930 Bytes
60da408
c9ba3ae
 
 
1b21942
 
 
c9ba3ae
 
4b2fe64
 
c9ba3ae
60da408
 
 
 
 
1b21942
 
c9ba3ae
 
 
 
c08faed
c9ba3ae
c08faed
60da408
b5fce9d
60da408
c9ba3ae
4b2fe64
c9ba3ae
 
 
 
 
60da408
c9ba3ae
 
 
4b2fe64
 
c9ba3ae
 
4b2fe64
60da408
 
 
 
 
 
c9ba3ae
60da408
 
 
 
c9ba3ae
60da408
 
b5fce9d
60da408
 
 
 
 
 
 
 
c9ba3ae
60da408
c9ba3ae
60da408
c9ba3ae
60da408
00588a3
60da408
4b2fe64
 
c9ba3ae
60da408
c9ba3ae
60da408
 
 
c9ba3ae
 
60da408
 
4b2fe64
c9ba3ae
 
 
 
 
 
60da408
c9ba3ae
 
 
60da408
4b2fe64
c9ba3ae
 
4b2fe64
c9ba3ae
 
 
4b2fe64
60da408
c9ba3ae
 
 
 
 
 
1b21942
60da408
c9ba3ae
 
 
 
 
 
 
 
 
 
 
 
1b21942
c9ba3ae
 
4b2fe64
60da408
486ca98
60da408
c9ba3ae
60da408
 
486ca98
c9ba3ae
4b2fe64
c9ba3ae
60da408
 
4b2fe64
c9ba3ae
 
 
 
 
 
4b2fe64
c9ba3ae
 
 
4b2fe64
c9ba3ae
 
4b2fe64
c9ba3ae
 
 
 
4b2fe64
c9ba3ae
 
 
 
 
 
4b2fe64
 
 
1b21942
 
4b2fe64
c9ba3ae
1b21942
c9ba3ae
 
 
1b21942
c9ba3ae
4b2fe64
c9ba3ae
1b21942
 
c9ba3ae
 
 
 
1b21942
c9ba3ae
4b2fe64
c9ba3ae
 
1b21942
c9ba3ae
 
4b2fe64
 
 
1b21942
c9ba3ae
 
1b21942
 
 
 
c9ba3ae
 
 
 
4b2fe64
 
 
 
 
 
60da408
c9ba3ae
60da408
c9ba3ae
60da408
 
c9ba3ae
60da408
 
c9ba3ae
 
 
 
60da408
c9ba3ae
1b21942
60da408
4b2fe64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60da408
c9ba3ae
 
60da408
4b2fe64
1b21942
c9ba3ae
 
 
 
 
4b2fe64
60da408
 
c9ba3ae
60da408
 
1b21942
 
 
 
 
 
4b2fe64
1b21942
 
60da408
 
1b21942
c9ba3ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# -*- coding: utf-8 -*-
#
# PROJECT:      CognitiveEDA - The AI-Augmented Data Discovery Platform
#
# SETUP:        This application has external dependencies. Before running, install
#               all required packages using the requirements.txt file:
#               $ pip install -r requirements.txt
#
# AUTHOR:       An MCP Expert in Data & AI Solutions
# VERSION:      3.2 (Enterprise Edition)
# LAST-UPDATE:  2023-10-28 (Fixed NameError scope issue in main analysis function)

from __future__ import annotations

import warnings
import logging
import os
import sys
import importlib.util
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple

import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai

# --- Configuration & Constants ---
# (No changes here)
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s'
)
warnings.filterwarnings('ignore', category=FutureWarning)

class Config:
    APP_TITLE = "πŸš€ CognitiveEDA: AI-Augmented Data Discovery Platform"
    GEMINI_MODEL = 'gemini-1.5-flash-latest'
    CORR_THRESHOLD = 0.75
    TOP_N_CATEGORIES = 10

# --- Core Analysis Engine ---
# (No changes here)
class DataAnalyzer:
    def __init__(self, df: pd.DataFrame):
        if not isinstance(df, pd.DataFrame):
            raise TypeError("Input must be a pandas DataFrame.")
        self.df = df
        self._metadata: Optional[Dict[str, Any]] = None
        logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}")

    @property
    def metadata(self) -> Dict[str, Any]:
        if self._metadata is None:
            logging.info("First access to metadata, performing extraction...")
            self._metadata = self._extract_metadata()
        return self._metadata

    def _extract_metadata(self) -> Dict[str, Any]:
        rows, cols = self.df.shape
        numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist()
        categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist()
        high_corr_pairs = []
        if len(numeric_cols) > 1:
            corr_matrix = self.df[numeric_cols].corr().abs()
            upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
            high_corr_series = upper_tri.stack()
            high_corr_pairs = (
                high_corr_series[high_corr_series > Config.CORR_THRESHOLD]
                .reset_index()
                .rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'})
                .to_dict('records')
            )
        return {
            'shape': (rows, cols), 'columns': self.df.columns.tolist(),
            'numeric_cols': numeric_cols, 'categorical_cols': categorical_cols,
            'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}",
            'total_missing': int(self.df.isnull().sum().sum()),
            'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2),
            'high_corr_pairs': high_corr_pairs,
        }

    def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
        logging.info("Generating profiling tables for missing, numeric, and categorical data.")
        missing = self.df.isnull().sum()
        missing_df = pd.DataFrame({
            'Missing Count': missing, 'Missing Percentage (%)': (missing / len(self.df) * 100).round(2)
        }).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Count', ascending=False)
        numeric_stats = self.df[self.metadata['numeric_cols']].describe(percentiles=[.01, .25, .5, .75, .99]).T
        numeric_stats_df = numeric_stats.round(3).reset_index().rename(columns={'index': 'Column'})
        cat_stats = self.df[self.metadata['categorical_cols']].describe(include=['object', 'category']).T
        cat_stats_df = cat_stats.reset_index().rename(columns={'index': 'Column'})
        return missing_df, numeric_stats_df, cat_stats_df

    def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]:
        logging.info("Generating overview visualizations (types, missing data, correlation).")
        meta = self.metadata
        dtype_counts = self.df.dtypes.astype(str).value_counts()
        fig_types = px.pie(values=dtype_counts.values, names=dtype_counts.index, title="<b>πŸ“Š Data Type Composition</b>", hole=0.4, color_discrete_sequence=px.colors.qualitative.Pastel)
        fig_types.update_traces(textposition='outside', textinfo='percent+label')
        missing_df = self.df.isnull().sum().reset_index(name='count').query('count > 0')
        fig_missing = px.bar(missing_df, x='index', y='count', title="<b>πŸ•³οΈ Missing Values Distribution</b>", labels={'index': 'Column Name', 'count': 'Number of Missing Values'}).update_xaxes(categoryorder="total descending")
        fig_corr = go.Figure()
        if len(meta['numeric_cols']) > 1:
            corr_matrix = self.df[meta['numeric_cols']].corr()
            fig_corr = px.imshow(corr_matrix, text_auto=".2f", aspect="auto", title=f"<b>πŸ”— Correlation Matrix (Threshold > {Config.CORR_THRESHOLD})</b>", color_continuous_scale='RdBu_r', zmin=-1, zmax=1)
        else:
            fig_corr.update_layout(title="<b>πŸ”— Correlation Matrix (Insufficient Numeric Data)</b>")
        return fig_types, fig_missing, fig_corr

    def generate_ai_narrative(self, api_key: str) -> str:
        logging.info("Generating AI narrative with the Gemini API.")
        meta = self.metadata
        data_snippet_md = self.df.head(5).to_markdown(index=False)
        prompt = f"""
        As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive, multi-part data discovery report.
        Analyze the following dataset context and produce a professional, insightful, and clear analysis in Markdown format.

        **DATASET CONTEXT:**
        - **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns.
        - **Column Schema:**
          - Numeric: {', '.join(meta['numeric_cols']) if meta['numeric_cols'] else 'None'}
          - Categorical: {', '.join(meta['categorical_cols']) if meta['categorical_cols'] else 'None'}
        - **Data Quality Score:** {meta['data_quality_score']}% (Percentage of non-missing cells)
        - **Total Missing Values:** {meta['total_missing']:,}
        - **High-Correlation Pairs (>{Config.CORR_THRESHOLD}):** {meta['high_corr_pairs'] if meta['high_corr_pairs'] else 'None detected.'}
        - **Data Snippet (First 5 Rows):**
        {data_snippet_md}

        **REQUIRED REPORT STRUCTURE (Strictly use this Markdown format):**
        ...
        """
        try:
            genai.configure(api_key=api_key)
            model = genai.GenerativeModel(Config.GEMINI_MODEL)
            response = model.generate_content(prompt)
            return response.text
        except Exception as e:
            logging.error(f"Gemini API call failed: {e}", exc_info=True)
            error_message = ("❌ **AI Report Generation Failed**\n\n" f"**Error Details:** `{str(e)}`\n\n" "**Troubleshooting Steps:**\n" "1.  Verify that your Google Gemini API key is correct and active.\n" "2.  Check your network connection and firewall settings.\n" "3.  Ensure the Gemini API is not experiencing an outage.")
            return error_message

# --- Gradio UI & Event Handlers ---
# (No changes here)
def create_ui():
    def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure:
        if not col or not analyzer: return go.Figure()
        return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box", template="plotly_white")
    def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col:str, color_col:str) -> go.Figure:
        if not all([analyzer, x_col, y_col]): return go.Figure()
        return px.scatter(analyzer.df, x=x_col, y=y_col, color=color_col, title=f"<b>Scatter Plot: {x_col} vs. {y_col}</b>", template="plotly_white", color_continuous_scale=px.colors.sequential.Viridis)
    def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]:
        if not col or not analyzer: return "", go.Figure()
        series = analyzer.df[col]
        stats_md = f"### πŸ”Ž **Deep Dive: `{col}`**\n- **Data Type:** `{series.dtype}`\n- **Unique Values:** `{series.nunique()}`\n- **Missing:** `{series.isnull().sum()}` ({series.isnull().mean():.2%})\n"
        fig = go.Figure()
        if pd.api.types.is_numeric_dtype(series):
            stats_md += f"- **Mean:** `{series.mean():.3f}` | **Std Dev:** `{series.std():.3f}`\n- **Median:** `{series.median():.3f}` | **Min:** `{series.min():.3f}` | **Max:** `{series.max():.3f}`\n"
            fig = create_histogram(analyzer, col)
        else:
            top_n = series.value_counts().nlargest(Config.TOP_N_CATEGORIES)
            stats_md += f"- **Top Value:** `{top_n.index[0]}` ({top_n.iloc[0]} occurrences)\n"
            fig = px.bar(top_n, y=top_n.index, x=top_n.values, orientation='h', title=f"<b>Top {Config.TOP_N_CATEGORIES} Categories in `{col}`</b>", labels={'y': col, 'x': 'Count'}, template="plotly_white").update_yaxes(categoryorder="total ascending")
        return stats_md, fig
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"), title=Config.APP_TITLE) as demo:
        state_analyzer = gr.State()
        gr.Markdown(f"<h1>{Config.APP_TITLE}</h1>")
        gr.Markdown("Upload a CSV file, provide your Gemini API key, and receive an instant, AI-driven analysis of your data.")
        with gr.Row():
            upload_button = gr.File(label="1. Upload CSV File", file_types=[".csv"], scale=3)
            api_key_input = gr.Textbox(label="2. Enter Google Gemini API Key", type="password", scale=2)
            analyze_button = gr.Button("✨ Generate Analysis", variant="primary", scale=1, min_width=150)
        with gr.Tabs():
            with gr.Tab("πŸ€– AI Narrative"):
                ai_report_output = gr.Markdown("Your AI-generated report will appear here...")
                download_report_button = gr.Button("⬇️ Download Full Report", visible=False)
            with gr.Tab("Profile"):
                profile_missing_df = gr.DataFrame(interactive=False, label="Missing Values")
                profile_numeric_df = gr.DataFrame(interactive=False, label="Numeric Stats")
                profile_categorical_df = gr.DataFrame(interactive=False, label="Categorical Stats")
            with gr.Tab("πŸ“ˆ Overview Visuals"):
                with gr.Row():
                    plot_types, plot_missing = gr.Plot(), gr.Plot()
                plot_correlation = gr.Plot()
            with gr.Tab("🎨 Interactive Explorer"):
                with gr.Row(equal_height=False):
                    with gr.Column(scale=1):
                        dd_hist_col = gr.Dropdown(label="Select Column for Histogram", visible=False)
                    with gr.Column(scale=2):
                        plot_histogram = gr.Plot()
                with gr.Row(equal_height=False):
                    with gr.Column(scale=1):
                        dd_scatter_x, dd_scatter_y, dd_scatter_color = gr.Dropdown(label="X-Axis (Numeric)", visible=False), gr.Dropdown(label="Y-Axis (Numeric)", visible=False), gr.Dropdown(label="Color By (Optional)", visible=False)
                    with gr.Column(scale=2):
                        plot_scatter = gr.Plot()
            with gr.Tab("πŸ” Column Deep-Dive"):
                dd_drilldown_col = gr.Dropdown(label="Select Column to Analyze", visible=False)
                with gr.Row():
                    md_drilldown_stats, plot_drilldown = gr.Markdown(), gr.Plot()
        gr.HTML("""<div style="text-align: center; margin-top: 20px; font-family: sans-serif; color: #777;"><p>πŸ’‘ Need an API key? Get one from <a href="https://aistudio.google.com/app/apikey" target="_blank">Google AI Studio</a>.</p><p>CognitiveEDA v3.2 | An MCP Expert System</p></div>""")
        outputs_for_main_analysis = [state_analyzer, ai_report_output, download_report_button, profile_missing_df, profile_numeric_df, profile_categorical_df, plot_types, plot_missing, plot_correlation, dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, dd_drilldown_col]
        analyze_button.click(fn=run_full_analysis, inputs=[upload_button, api_key_input], outputs=outputs_for_main_analysis)
        dd_hist_col.change(fn=create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=plot_histogram)
        scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color]
        for dd in [dd_scatter_x, dd_scatter_y, dd_scatter_color]:
            dd.change(fn=create_scatterplot, inputs=scatter_inputs, outputs=plot_scatter)
        dd_drilldown_col.change(fn=analyze_single_column, inputs=[state_analyzer, dd_drilldown_col], outputs=[md_drilldown_stats, plot_drilldown])
        download_report_button.click(fn=download_report_file, inputs=[state_analyzer, ai_report_output], outputs=gr.File(label="Download Report"))
    return demo

# --- Main Application Logic ---

### THIS IS THE CORRECTED FUNCTION ###
def run_full_analysis(file_obj: gr.File, api_key: str) -> list:
    """
    Orchestrates the entire analysis pipeline upon button click.
    Returns a list of values to update all relevant UI components.
    """
    if file_obj is None:
        raise gr.Error("CRITICAL: No file uploaded. Please select a CSV file.")
    if not api_key:
        raise gr.Error("CRITICAL: Gemini API key is missing. Please provide your key.")

    try:
        logging.info(f"Processing uploaded file: {file_obj.name}")
        df = pd.read_csv(file_obj.name)
        analyzer = DataAnalyzer(df)

        ai_report = analyzer.generate_ai_narrative(api_key)
        missing_df, num_df, cat_df = analyzer.get_profiling_tables()
        fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
        
        meta = analyzer.metadata
        all_cols, num_cols = meta['columns'], meta['numeric_cols']
        
        # Return a LIST of values in the same order as the 'outputs' list
        return [
            analyzer,
            ai_report,
            gr.Button(visible=True),
            missing_df,
            num_df,
            cat_df,
            fig_types,
            fig_missing,
            fig_corr,
            gr.Dropdown(choices=num_cols, label="Select Numeric Column", visible=True),
            gr.Dropdown(choices=num_cols, label="X-Axis (Numeric)", visible=True),
            gr.Dropdown(choices=num_cols, label="Y-Axis (Numeric)", visible=True),
            gr.Dropdown(choices=all_cols, label="Color By (Optional)", visible=True),
            gr.Dropdown(choices=all_cols, label="Select Column to Analyze", visible=True)
        ]
    except Exception as e:
        logging.error(f"A critical error occurred during file processing: {e}", exc_info=True)
        raise gr.Error(f"Analysis Failed! The process stopped due to: {str(e)}")

# (No changes to other functions)
def download_report_file(analyzer: DataAnalyzer, ai_report_text: str) -> Optional[str]:
    if not analyzer:
        logging.warning("Download attempted without a valid analyzer object.")
        return None
    filename = f"CognitiveEDA_Report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
    meta = analyzer.metadata
    full_report = f"# CognitiveEDA - Data Discovery Report\n**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n## Dataset Overview\n- **Shape:** {meta['shape'][0]} rows x {meta['shape'][1]} columns\n- **Memory Footprint:** {meta['memory_usage_mb']} MB\n- **Data Quality Score:** {meta['data_quality_score']}%\n\n---\n\n{ai_report_text}"
    with open(filename, "w", encoding="utf-8") as f:
        f.write(full_report)
    logging.info(f"Report file generated successfully: {filename}")
    return filename

def perform_pre_flight_checks():
    logging.info("Performing pre-flight dependency checks...")
    required_packages = ["pandas", "gradio", "plotly", "google.generativeai", "tabulate"]
    missing_packages = [pkg for pkg in required_packages if importlib.util.find_spec(pkg) is None]
    if missing_packages:
        logging.critical(f"Missing critical packages: {', '.join(missing_packages)}")
        print("\n" + "="*80 + "\nERROR: Your environment is missing critical dependencies.\n" + f"Missing package(s): {', '.join(missing_packages)}\n" + "Please install all required packages using the requirements.txt file:\n" + "pip install -r requirements.txt\n" + "="*80 + "\n")
        sys.exit(1)
    logging.info("All dependencies are satisfied. Proceeding with launch.")

if __name__ == "__main__":
    perform_pre_flight_checks()
    app_instance = create_ui()
    app_instance.launch(debug=True, server_name="0.0.0.0")