mgbam commited on
Commit
00588a3
Β·
verified Β·
1 Parent(s): c224edd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -26
app.py CHANGED
@@ -14,6 +14,7 @@ import re
14
  warnings.filterwarnings('ignore')
15
  MAX_DASHBOARD_PLOTS = 10
16
  CSS = """
 
17
  #app-title { text-align: center; font-weight: 800; font-size: 2.5rem; color: #f9fafb; padding-top: 10px; }
18
  .stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
19
  .stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
@@ -36,35 +37,44 @@ class DataExplorerApp:
36
  with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="AI Data Explorer Pro") as demo:
37
  state_var = gr.State({})
38
 
39
- # Component Definition
40
  cockpit_btn = gr.Button("πŸ“Š Data Cockpit", elem_classes="selected", elem_id="cockpit")
41
  deep_dive_btn = gr.Button("πŸ” Deep Dive Builder", elem_id="deep_dive")
42
  copilot_btn = gr.Button("πŸ€– Chief Data Scientist", elem_id="co-pilot")
43
- file_input = gr.File(label="πŸ“ Upload CSV File", file_types=[".csv"])
 
 
 
 
 
 
44
  status_output = gr.Markdown("Status: Awaiting data...")
45
  api_key_input = gr.Textbox(label="πŸ”‘ Gemini API Key", type="password", placeholder="Enter key to enable AI...")
46
  suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
 
47
  rows_stat, cols_stat = gr.Textbox("0", interactive=False, show_label=False), gr.Textbox("0", interactive=False, show_label=False)
48
  quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, show_label=False), gr.Textbox("0", interactive=False, show_label=False)
49
  suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
 
50
  plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
51
  x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
52
  y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
53
  add_plot_btn, clear_plots_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False), gr.Button("Clear Dashboard", interactive=False)
54
  dashboard_plots = [gr.Plot(visible=False) for _ in range(MAX_DASHBOARD_PLOTS)]
 
55
  chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True, avatar_images=(None, "bot.png"))
56
  copilot_explanation, copilot_code = gr.Markdown(visible=False, elem_classes="explanation-block"), gr.Code(language="python", visible=False, label="Executed Code")
57
  copilot_plot, copilot_table = gr.Plot(visible=False, label="Generated Visualization"), gr.Dataframe(visible=False, label="Generated Table", wrap=True)
58
  chat_input, chat_submit_btn = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4), gr.Button("Ask AI", variant="primary", interactive=False)
59
 
60
- # Layout Arrangement
61
  with gr.Row():
62
  with gr.Column(scale=1, elem_classes="sidebar"):
63
  gr.Markdown("## πŸš€ AI Explorer Pro", elem_id="app-title"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---")
64
  file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
65
  with gr.Column(scale=4):
66
  welcome_page, cockpit_page, deep_dive_page, copilot_page = [gr.Column(visible=i==0) for i in range(4)]
67
- with welcome_page: gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
68
  with cockpit_page:
69
  gr.Markdown("## πŸ“Š Data Cockpit: At-a-Glance Overview")
70
  with gr.Row():
@@ -81,7 +91,7 @@ class DataExplorerApp:
81
  with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
82
  with gr.Row(): chat_input; chat_submit_btn
83
 
84
- # Event Handlers Registration
85
  pages, nav_buttons = [welcome_page, cockpit_page, deep_dive_page, copilot_page], [cockpit_btn, deep_dive_btn, copilot_btn]
86
  for i, btn in enumerate(nav_buttons):
87
  btn.click(lambda id=btn.elem_id: self._switch_page(id, pages), outputs=pages).then(
@@ -107,7 +117,6 @@ class DataExplorerApp:
107
 
108
  def launch(self): self.demo.launch(debug=True)
109
 
110
- # --- Backend Logic Methods ---
111
  def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
112
  visibility = {"welcome":0, "cockpit":1, "deep_dive":2, "co-pilot":3}
113
  return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))]
@@ -115,20 +124,39 @@ class DataExplorerApp:
115
  def _update_plot_controls(self, plot_type: str) -> gr.update: return gr.update(visible=plot_type in ['scatter', 'box'])
116
 
117
  def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
 
118
  try:
119
- df = pd.read_csv(file_obj.name, low_memory=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  metadata = self._extract_dataset_metadata(df)
121
  state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
122
  rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
123
  page_updates = self._switch_page("cockpit", [0,1,2,3])
124
- return (state, f"βœ… **{os.path.basename(file_obj.name)}** loaded.", *page_updates, f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
125
  gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
126
  except Exception as e:
127
  gr.Error(f"File Load Error: {e}"); page_updates = self._switch_page("welcome", [0,1,2,3]);
128
  return {}, f"❌ Error: {e}", *page_updates, "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
129
 
130
  def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
131
- rows, cols, quality = df.shape[0], df.shape[1], round((df.notna().sum().sum() / (df.size)) * 100, 1) if df.size > 0 else 0
 
132
  return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
133
  'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
134
  'dtypes_head': df.head(3).to_string(), 'data_quality': quality}
@@ -171,10 +199,7 @@ class DataExplorerApp:
171
  return *self._switch_page("co-pilot", [0,1,2,3]), question
172
 
173
  def _sanitize_and_parse_json(self, raw_text: str) -> Dict:
174
- """Cleans and parses a JSON string from an LLM response."""
175
- # Remove markdown code blocks
176
  clean_text = re.sub(r'```json\n?|```', '', raw_text).strip()
177
- # Escape single backslashes that are not already escaped
178
  clean_text = re.sub(r'(?<!\\)\\(?!["\\/bfnrtu])', r'\\\\', clean_text)
179
  return json.loads(clean_text)
180
 
@@ -185,22 +210,14 @@ class DataExplorerApp:
185
 
186
  history.append((user_message, "Thinking... πŸ€”")); yield history, *[gr.update(visible=False)]*4
187
 
188
- metadata, dtypes_head = state.get('metadata', {}), state.get('metadata', {}).get('dtypes_head', 'No metadata available.')
189
- prompt = f"""You are 'Chief Data Scientist', an expert AI analyst. Your goal is to answer a user's question about a pandas DataFrame (`df`) by writing and executing Python code.
190
- **Instructions:**
191
- 1. **Analyze:** Understand the user's intent. Infer the best plot type.
192
- 2. **Plan:** Briefly explain your plan.
193
- 3. **Code:** Write Python code. Use `fig` for plots (`template='plotly_dark'`) and `result_df` for tables.
194
- 4. **Insight:** Provide a one-sentence business insight.
195
- 5. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
196
- **Metadata:** {dtypes_head}
197
- **User Question:** "{user_message}"
198
  """
199
  try:
200
- genai.configure(api_key=api_key)
201
- # CRITICAL FIX: Use the new sanitizer function
202
- response_json = self._sanitize_and_parse_json(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
203
-
204
  plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
205
  stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
206
 
 
14
  warnings.filterwarnings('ignore')
15
  MAX_DASHBOARD_PLOTS = 10
16
  CSS = """
17
+ /* --- Phoenix UI Professional Dark CSS --- */
18
  #app-title { text-align: center; font-weight: 800; font-size: 2.5rem; color: #f9fafb; padding-top: 10px; }
19
  .stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
20
  .stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
 
37
  with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="AI Data Explorer Pro") as demo:
38
  state_var = gr.State({})
39
 
40
+ # --- Component Definition ---
41
  cockpit_btn = gr.Button("πŸ“Š Data Cockpit", elem_classes="selected", elem_id="cockpit")
42
  deep_dive_btn = gr.Button("πŸ” Deep Dive Builder", elem_id="deep_dive")
43
  copilot_btn = gr.Button("πŸ€– Chief Data Scientist", elem_id="co-pilot")
44
+
45
+ # UPDATED: File input now accepts multiple types
46
+ file_input = gr.File(
47
+ label="πŸ“ Upload Data File",
48
+ file_types=[".csv", ".txt", ".xls", ".xlsx"]
49
+ )
50
+
51
  status_output = gr.Markdown("Status: Awaiting data...")
52
  api_key_input = gr.Textbox(label="πŸ”‘ Gemini API Key", type="password", placeholder="Enter key to enable AI...")
53
  suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
54
+
55
  rows_stat, cols_stat = gr.Textbox("0", interactive=False, show_label=False), gr.Textbox("0", interactive=False, show_label=False)
56
  quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, show_label=False), gr.Textbox("0", interactive=False, show_label=False)
57
  suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
58
+
59
  plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
60
  x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
61
  y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
62
  add_plot_btn, clear_plots_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False), gr.Button("Clear Dashboard", interactive=False)
63
  dashboard_plots = [gr.Plot(visible=False) for _ in range(MAX_DASHBOARD_PLOTS)]
64
+
65
  chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True, avatar_images=(None, "bot.png"))
66
  copilot_explanation, copilot_code = gr.Markdown(visible=False, elem_classes="explanation-block"), gr.Code(language="python", visible=False, label="Executed Code")
67
  copilot_plot, copilot_table = gr.Plot(visible=False, label="Generated Visualization"), gr.Dataframe(visible=False, label="Generated Table", wrap=True)
68
  chat_input, chat_submit_btn = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4), gr.Button("Ask AI", variant="primary", interactive=False)
69
 
70
+ # --- Layout Arrangement ---
71
  with gr.Row():
72
  with gr.Column(scale=1, elem_classes="sidebar"):
73
  gr.Markdown("## πŸš€ AI Explorer Pro", elem_id="app-title"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---")
74
  file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
75
  with gr.Column(scale=4):
76
  welcome_page, cockpit_page, deep_dive_page, copilot_page = [gr.Column(visible=i==0) for i in range(4)]
77
+ with welcome_page: gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV, TXT, or Excel file** and **enter your Gemini API key** to begin your analysis.")
78
  with cockpit_page:
79
  gr.Markdown("## πŸ“Š Data Cockpit: At-a-Glance Overview")
80
  with gr.Row():
 
91
  with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
92
  with gr.Row(): chat_input; chat_submit_btn
93
 
94
+ # --- Event Handlers Registration ---
95
  pages, nav_buttons = [welcome_page, cockpit_page, deep_dive_page, copilot_page], [cockpit_btn, deep_dive_btn, copilot_btn]
96
  for i, btn in enumerate(nav_buttons):
97
  btn.click(lambda id=btn.elem_id: self._switch_page(id, pages), outputs=pages).then(
 
117
 
118
  def launch(self): self.demo.launch(debug=True)
119
 
 
120
  def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
121
  visibility = {"welcome":0, "cockpit":1, "deep_dive":2, "co-pilot":3}
122
  return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))]
 
124
  def _update_plot_controls(self, plot_type: str) -> gr.update: return gr.update(visible=plot_type in ['scatter', 'box'])
125
 
126
  def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
127
+ """Intelligently loads data from CSV, TXT, or Excel files."""
128
  try:
129
+ filename = file_obj.name
130
+ extension = os.path.splitext(filename)[1].lower()
131
+
132
+ if extension == '.csv':
133
+ df = pd.read_csv(filename)
134
+ elif extension == '.txt':
135
+ # Use sep=None to auto-detect the delimiter (tabs, spaces, etc.)
136
+ df = pd.read_csv(filename, sep=None, engine='python')
137
+ elif extension in ['.xls', '.xlsx']:
138
+ df = pd.read_excel(filename)
139
+ else:
140
+ raise ValueError(f"Unsupported file type: {extension}")
141
+
142
+ # Continue with processing once the DataFrame is loaded
143
+ for col in df.select_dtypes(include=['object']).columns:
144
+ try: df[col] = pd.to_datetime(df[col], errors='raise')
145
+ except (ValueError, TypeError): continue
146
+
147
  metadata = self._extract_dataset_metadata(df)
148
  state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
149
  rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
150
  page_updates = self._switch_page("cockpit", [0,1,2,3])
151
+ return (state, f"βœ… **{os.path.basename(filename)}** loaded.", *page_updates, f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
152
  gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
153
  except Exception as e:
154
  gr.Error(f"File Load Error: {e}"); page_updates = self._switch_page("welcome", [0,1,2,3]);
155
  return {}, f"❌ Error: {e}", *page_updates, "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
156
 
157
  def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
158
+ rows, cols = df.shape
159
+ quality = round((df.notna().sum().sum() / df.size) * 100, 1) if df.size > 0 else 0
160
  return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
161
  'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
162
  'dtypes_head': df.head(3).to_string(), 'data_quality': quality}
 
199
  return *self._switch_page("co-pilot", [0,1,2,3]), question
200
 
201
  def _sanitize_and_parse_json(self, raw_text: str) -> Dict:
 
 
202
  clean_text = re.sub(r'```json\n?|```', '', raw_text).strip()
 
203
  clean_text = re.sub(r'(?<!\\)\\(?!["\\/bfnrtu])', r'\\\\', clean_text)
204
  return json.loads(clean_text)
205
 
 
210
 
211
  history.append((user_message, "Thinking... πŸ€”")); yield history, *[gr.update(visible=False)]*4
212
 
213
+ metadata = state.get('metadata', {}); dtypes_head = metadata.get('dtypes_head', 'No metadata available.')
214
+ prompt = f"""You are 'Chief Data Scientist', an expert AI analyst...
215
+ Respond ONLY with a single JSON object with keys: "plan", "code", "insight".
216
+ Metadata: {dtypes_head}
217
+ User Question: "{user_message}"
 
 
 
 
 
218
  """
219
  try:
220
+ genai.configure(api_key=api_key); response_json = self._sanitize_and_parse_json(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
 
 
 
221
  plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
222
  stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
223