|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
import plotly.express as px |
|
import io |
|
import json |
|
import warnings |
|
import google.generativeai as genai |
|
import os |
|
from typing import List, Dict, Any, Tuple, Optional |
|
|
|
|
|
warnings.filterwarnings('ignore') |
|
|
|
CSS = """ |
|
/* --- Phoenix UI Professional Dark CSS --- */ |
|
body { --body-background-fill: #111827; } |
|
.stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; } |
|
.stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); } |
|
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; } |
|
.stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; } |
|
.sidebar { background-color: #111827 !important; padding: 15px; border-right: 1px solid #374151 !important; min-height: 100vh; } |
|
.sidebar .gr-button { width: 100%; text-align: left !important; background: none !important; border: none !important; box-shadow: none !important; color: #d1d5db !important; font-size: 16px !important; padding: 12px 10px !important; margin-bottom: 8px !important; border-radius: 8px !important; transition: background-color 0.2s ease; } |
|
.sidebar .gr-button:hover { background-color: #374151 !important; } |
|
.sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; } |
|
.explanation-block { background-color: #1e3a8a !important; border-left: 4px solid #3b82f6 !important; padding: 12px; color: #e5e7eb !important; border-radius: 4px; } |
|
""" |
|
|
|
class DataExplorerApp: |
|
"""A professional-grade, AI-powered data exploration application.""" |
|
|
|
def __init__(self): |
|
"""Initializes the application and builds the UI and event listeners.""" |
|
self.demo = self._build_ui() |
|
|
|
def _build_ui(self) -> gr.Blocks: |
|
""" |
|
Defines all UI components, arranges them in the layout, |
|
and registers all event handlers within the same Blocks context. |
|
""" |
|
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Professional AI Data Explorer") as demo: |
|
|
|
state_var = gr.State({}) |
|
|
|
|
|
|
|
cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected", elem_id="cockpit") |
|
deep_dive_btn = gr.Button("π Deep Dive Builder", elem_id="deep_dive") |
|
copilot_btn = gr.Button("π€ Chief Data Scientist", elem_id="co-pilot") |
|
file_input = gr.File(label="π Upload CSV File", file_types=[".csv"]) |
|
status_output = gr.Markdown("Status: Awaiting data...") |
|
api_key_input = gr.Textbox(label="π Gemini API Key", type="password", placeholder="Enter key to enable AI...") |
|
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False) |
|
|
|
|
|
rows_stat, cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, elem_classes="stat-card-value") |
|
quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, elem_classes="stat-card-value") |
|
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)] |
|
|
|
|
|
plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram') |
|
x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False) |
|
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False) |
|
add_plot_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False) |
|
clear_plots_btn = gr.Button("Clear Dashboard") |
|
dashboard_gallery = gr.Gallery(label="π Your Custom Dashboard", height="auto", columns=2, preview=True) |
|
|
|
|
|
chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True) |
|
copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block") |
|
copilot_code = gr.Code(language="python", visible=False, label="Executed Code") |
|
copilot_plot = gr.Plot(visible=False, label="Generated Visualization") |
|
copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True) |
|
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4) |
|
chat_submit_btn = gr.Button("Ask AI", variant="primary") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, elem_classes="sidebar"): |
|
gr.Markdown("## π AI Explorer Pro"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---") |
|
file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn |
|
with gr.Column(scale=4): |
|
welcome_page = gr.Column(visible=True) |
|
with welcome_page: |
|
gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.") |
|
gr.Image("workflow.png", show_label=False, show_download_button=False, container=False) |
|
|
|
cockpit_page = gr.Column(visible=False) |
|
with cockpit_page: |
|
gr.Markdown("## π Data Cockpit: At-a-Glance Overview") |
|
with gr.Row(): |
|
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Rows</div>"); rows_stat |
|
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Columns</div>"); cols_stat |
|
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); quality_stat |
|
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); time_cols_stat |
|
with gr.Accordion(label="β¨ AI Smart Suggestions", open=True): [btn for btn in suggestion_buttons] |
|
|
|
deep_dive_page = gr.Column(visible=False) |
|
with deep_dive_page: |
|
gr.Markdown("## π Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct your own visualizations to investigate specific relationships.") |
|
with gr.Row(): plot_type_dd; x_col_dd; y_col_dd |
|
with gr.Row(): add_plot_btn; clear_plots_btn |
|
dashboard_gallery |
|
|
|
copilot_page = gr.Column(visible=False) |
|
with copilot_page: |
|
gr.Markdown("## π€ Chief Data Scientist: Your AI Partner"); chatbot |
|
with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table |
|
with gr.Row(): chat_input; chat_submit_btn |
|
|
|
|
|
pages = [cockpit_page, deep_dive_page, copilot_page] |
|
nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn] |
|
|
|
for i, btn in enumerate(nav_buttons): |
|
btn.click( |
|
lambda id=btn.elem_id: self._switch_page(id), outputs=pages |
|
).then( |
|
lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons |
|
) |
|
|
|
file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[ |
|
state_var, status_output, welcome_page, cockpit_page, |
|
rows_stat, cols_stat, quality_stat, time_cols_stat, |
|
x_col_dd, y_col_dd, add_plot_btn |
|
]).then(lambda: self._switch_page("cockpit"), outputs=pages) \ |
|
.then(lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons) |
|
|
|
api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn]) |
|
|
|
plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd]) |
|
add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, dashboard_gallery]) |
|
clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, dashboard_gallery]) |
|
|
|
suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons) |
|
for btn in suggestion_buttons: |
|
btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input]) \ |
|
.then(lambda: self._switch_page("co-pilot"), outputs=pages) \ |
|
.then(lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons) |
|
|
|
chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input]) |
|
chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input]) |
|
|
|
return demo |
|
|
|
def launch(self): |
|
"""Launches the Gradio application.""" |
|
self.demo.launch(debug=True) |
|
|
|
|
|
def _switch_page(self, page_id: str) -> Tuple[gr.update, ...]: |
|
return gr.update(visible=page_id=="cockpit"), gr.update(visible=page_id=="deep_dive"), gr.update(visible=page_id=="co-pilot") |
|
|
|
def _update_plot_controls(self, plot_type: str) -> gr.update: |
|
return gr.update(visible=plot_type in ['scatter', 'box']) |
|
|
|
def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]: |
|
try: |
|
df = pd.read_csv(file_obj.name, low_memory=False) |
|
for col in df.select_dtypes(include=['object']).columns: |
|
try: df[col] = pd.to_datetime(df[col], errors='raise') |
|
except (ValueError, TypeError): continue |
|
|
|
metadata = self._extract_dataset_metadata(df) |
|
state = {'df': df, 'metadata': metadata, 'dashboard_plots': []} |
|
status_msg = f"β
**{os.path.basename(file_obj.name)}** loaded." |
|
rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality'] |
|
|
|
return (state, status_msg, gr.update(visible=False), gr.update(visible=True), |
|
f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}", |
|
gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True)) |
|
except Exception as e: |
|
gr.Error(f"File Load Error: {e}"); return {}, f"β Error: {e}", gr.update(visible=True), gr.update(visible=False), "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False) |
|
|
|
def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]: |
|
rows, cols = df.shape |
|
quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0 |
|
return {'shape': (rows, cols), 'columns': df.columns.tolist(), |
|
'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(), |
|
'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(), |
|
'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(), |
|
'dtypes_head': df.head().to_string()} |
|
|
|
def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> Tuple[Dict, List]: |
|
if not x_col: |
|
gr.Warning("Please select at least an X-axis column."); return state, state.get('dashboard_plots', []) |
|
df = state['df'] |
|
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col and plot_type in ['box', 'scatter'] else f"Distribution of {x_col}" |
|
try: |
|
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title) |
|
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title) |
|
elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols", trendline_color_override="red") |
|
elif plot_type == 'bar': |
|
counts = df[x_col].value_counts().nlargest(20) |
|
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'}) |
|
if fig: |
|
fig.update_layout(template="plotly_dark"); state['dashboard_plots'].append(fig); gr.Info(f"Added '{title}' to the dashboard.") |
|
return state, state['dashboard_plots'] |
|
except Exception as e: |
|
gr.Error(f"Plotting Error: {e}"); return state, state.get('dashboard_plots', []) |
|
|
|
def clear_dashboard(self, state: Dict) -> Tuple[Dict, List]: |
|
state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return state, [] |
|
|
|
def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]: |
|
if not api_key: gr.Warning("API Key is required for suggestions."); return [gr.update(visible=False)]*5 |
|
if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5 |
|
metadata = state['metadata'] |
|
prompt = f"""Based on this metadata (columns: {metadata['columns']}), generate 4 impactful analytical questions. Return ONLY a JSON list of strings.""" |
|
try: |
|
genai.configure(api_key=api_key) |
|
suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text) |
|
return [gr.Button(s, visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions)) |
|
except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5 |
|
|
|
def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]: |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question |
|
|
|
def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any: |
|
if not api_key or not state: |
|
msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4 |
|
|
|
history.append((user_message, "Thinking... π€")); yield history, *[gr.update(visible=False)]*4 |
|
|
|
metadata, prompt = state['metadata'], f"""You are 'Chief Data Scientist', an expert AI analyst... |
|
**Instructions:** |
|
1. **Analyze:** Understand the user's intent. |
|
2. **Method:** Choose the best method (table, value, or plot). Infer the best plot type. |
|
3. **Plan:** Briefly explain your plan. |
|
4. **Code:** Write Python code. Use `fig` for plots (with `template='plotly_dark'`) and `result_df` for tables. |
|
5. **Insight:** Provide a one-sentence business insight. |
|
6. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".** |
|
**Metadata:** {metadata['dtypes_head']} |
|
**User Question:** "{user_message}" |
|
""" |
|
try: |
|
genai.configure(api_key=api_key) |
|
response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", "")) |
|
plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight") |
|
stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd}) |
|
|
|
history[-1] = (user_message, f"**Plan:** {plan}") |
|
explanation = f"**Insight:** {insight}" |
|
if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```" |
|
if error: gr.Error(f"AI Code Execution Failed: {error}") |
|
|
|
yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code), |
|
gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result)) |
|
except Exception as e: |
|
history[-1] = (user_message, f"I encountered an error. Please rephrase your question. (Error: {e})") |
|
yield history, *[gr.update(visible=False)]*4 |
|
|
|
def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]: |
|
output_buffer = io.StringIO() |
|
try: |
|
with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars) |
|
return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None |
|
except Exception as e: return None, None, None, str(e) |
|
|
|
if __name__ == "__main__": |
|
app = DataExplorerApp() |
|
app.launch() |