Update app.py
Browse files
app.py
CHANGED
@@ -30,133 +30,129 @@ class DataExplorerApp:
|
|
30 |
"""A professional-grade, AI-powered data exploration application."""
|
31 |
|
32 |
def __init__(self):
|
33 |
-
"""Initializes the application
|
34 |
-
self.
|
35 |
-
self.demo = self._create_layout()
|
36 |
-
self._register_event_handlers()
|
37 |
|
38 |
-
def
|
39 |
-
"""
|
|
|
|
|
|
|
40 |
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Professional AI Data Explorer") as demo:
|
41 |
# --- State Management ---
|
42 |
-
|
43 |
|
44 |
# --- Component Definition ---
|
45 |
# Sidebar
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
# Cockpit
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
self.time_cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
|
59 |
-
self.suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
|
60 |
|
61 |
# Deep Dive
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
# Co-pilot
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
# --- Layout Arrangement ---
|
79 |
with gr.Row():
|
80 |
with gr.Column(scale=1, elem_classes="sidebar"):
|
81 |
-
gr.Markdown("## π AI Explorer Pro")
|
82 |
-
|
83 |
-
self.file_input; self.status_output; gr.Markdown("---"); self.api_key_input; self.suggestion_btn
|
84 |
with gr.Column(scale=4):
|
85 |
-
|
86 |
-
with
|
87 |
gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
gr.Markdown("## π Data Cockpit: At-a-Glance Overview")
|
91 |
with gr.Row():
|
92 |
-
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Rows</div>");
|
93 |
-
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Columns</div>");
|
94 |
-
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Data Quality</div>");
|
95 |
-
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>");
|
96 |
-
with gr.Accordion(label="β¨ AI Smart Suggestions", open=True): [btn for btn in
|
97 |
-
self.deep_dive_page = gr.Column(visible=False)
|
98 |
-
with self.deep_dive_page:
|
99 |
-
gr.Markdown("## π Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct your own visualizations to investigate specific relationships.")
|
100 |
-
with gr.Row(): self.plot_type_dd; self.x_col_dd; self.y_col_dd
|
101 |
-
with gr.Row(): self.add_plot_btn; self.clear_plots_btn
|
102 |
-
self.dashboard_gallery
|
103 |
-
self.copilot_page = gr.Column(visible=False)
|
104 |
-
with self.copilot_page:
|
105 |
-
gr.Markdown("## π€ Chief Data Scientist: Your AI Partner"); self.chatbot
|
106 |
-
with gr.Accordion("AI's Detailed Response", open=True): self.copilot_explanation; self.copilot_code; self.copilot_plot; self.copilot_table
|
107 |
-
with gr.Row(): self.chat_input; self.chat_submit_btn
|
108 |
-
return demo
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
.then(lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
|
129 |
|
130 |
-
|
131 |
-
self.api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[self.api_key_input], outputs=[self.suggestion_btn])
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
self.clear_plots_btn.click(self.clear_dashboard, inputs=[self.state_var], outputs=[self.state_var, self.dashboard_gallery])
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
self.chat_input.submit(self.respond_to_chat, [self.state_var, self.api_key_input, self.chat_input, self.chatbot], [self.chatbot, self.copilot_explanation, self.copilot_code, self.copilot_plot, self.copilot_table]).then(lambda: "", outputs=[self.chat_input])
|
147 |
|
148 |
def launch(self):
|
149 |
"""Launches the Gradio application."""
|
150 |
self.demo.launch(debug=True)
|
151 |
|
152 |
# --- Backend Logic Methods ---
|
153 |
-
|
154 |
def _switch_page(self, page_id: str) -> Tuple[gr.update, ...]:
|
155 |
return gr.update(visible=page_id=="cockpit"), gr.update(visible=page_id=="deep_dive"), gr.update(visible=page_id=="co-pilot")
|
156 |
|
157 |
def _update_plot_controls(self, plot_type: str) -> gr.update:
|
158 |
-
|
159 |
-
return gr.update(visible=is_bivariate)
|
160 |
|
161 |
def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
|
162 |
try:
|
@@ -168,15 +164,13 @@ class DataExplorerApp:
|
|
168 |
metadata = self._extract_dataset_metadata(df)
|
169 |
state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
|
170 |
status_msg = f"β
**{os.path.basename(file_obj.name)}** loaded."
|
171 |
-
|
172 |
rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
|
173 |
|
174 |
return (state, status_msg, gr.update(visible=False), gr.update(visible=True),
|
175 |
f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
|
176 |
gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
|
177 |
except Exception as e:
|
178 |
-
gr.Error(f"File Load Error: {e}")
|
179 |
-
return {}, f"β Error: {e}", gr.update(visible=True), gr.update(visible=False), "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
|
180 |
|
181 |
def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
|
182 |
rows, cols = df.shape
|
@@ -187,12 +181,11 @@ class DataExplorerApp:
|
|
187 |
'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
|
188 |
'dtypes_head': df.head().to_string()}
|
189 |
|
190 |
-
def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: str, plot_type: str) -> Tuple[Dict, List]:
|
191 |
if not x_col:
|
192 |
-
gr.Warning("Please select at least an X-axis column.")
|
193 |
-
return state, state.get('dashboard_plots', [])
|
194 |
df = state['df']
|
195 |
-
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col else f"Distribution of {x_col}"
|
196 |
try:
|
197 |
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
|
198 |
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
|
@@ -201,17 +194,13 @@ class DataExplorerApp:
|
|
201 |
counts = df[x_col].value_counts().nlargest(20)
|
202 |
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'})
|
203 |
if fig:
|
204 |
-
fig.update_layout(template="plotly_dark")
|
205 |
-
state['dashboard_plots'].append(fig)
|
206 |
-
gr.Info(f"Added '{title}' to the dashboard.")
|
207 |
return state, state['dashboard_plots']
|
208 |
except Exception as e:
|
209 |
gr.Error(f"Plotting Error: {e}"); return state, state.get('dashboard_plots', [])
|
210 |
|
211 |
def clear_dashboard(self, state: Dict) -> Tuple[Dict, List]:
|
212 |
-
state['dashboard_plots'] = []
|
213 |
-
gr.Info("Dashboard cleared.")
|
214 |
-
return state, []
|
215 |
|
216 |
def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
|
217 |
if not api_key: gr.Warning("API Key is required for suggestions."); return [gr.update(visible=False)]*5
|
@@ -227,46 +216,38 @@ class DataExplorerApp:
|
|
227 |
def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
|
228 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question
|
229 |
|
230 |
-
def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) ->
|
231 |
if not api_key or not state:
|
232 |
-
msg = "I need a Gemini API key and a dataset to work."
|
233 |
-
history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
|
234 |
|
235 |
history.append((user_message, "Thinking... π€")); yield history, *[gr.update(visible=False)]*4
|
236 |
|
237 |
-
metadata = state['metadata']
|
238 |
-
prompt = f"""You are 'Chief Data Scientist', an expert AI analyst. Your goal is to answer a user's question about a pandas DataFrame (`df`) by writing and executing Python code.
|
239 |
-
|
240 |
**Instructions:**
|
241 |
-
1.
|
242 |
-
2.
|
243 |
-
3.
|
244 |
-
4.
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
6. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
|
249 |
-
|
250 |
-
**DataFrame Metadata:** {metadata['dtypes_head']}
|
251 |
**User Question:** "{user_message}"
|
252 |
"""
|
253 |
try:
|
254 |
genai.configure(api_key=api_key)
|
255 |
response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
|
256 |
-
plan,
|
|
|
257 |
|
258 |
-
stdout, fig_result, df_result, error = self._safe_exec(code_to_run, {'df': state['df'], 'px': px, 'pd': pd, 'np': np})
|
259 |
-
|
260 |
history[-1] = (user_message, f"**Plan:** {plan}")
|
261 |
-
|
262 |
explanation = f"**Insight:** {insight}"
|
263 |
if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```"
|
264 |
if error: gr.Error(f"AI Code Execution Failed: {error}")
|
265 |
|
266 |
-
yield (history, gr.update(visible=bool(explanation)), gr.update(visible=bool(
|
267 |
-
gr.update(visible=bool(
|
268 |
except Exception as e:
|
269 |
-
history[-1] = (user_message, f"I
|
270 |
yield history, *[gr.update(visible=False)]*4
|
271 |
|
272 |
def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
|
@@ -274,7 +255,7 @@ class DataExplorerApp:
|
|
274 |
try:
|
275 |
with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
|
276 |
return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None
|
277 |
-
except Exception as e: return None, None, None,
|
278 |
|
279 |
if __name__ == "__main__":
|
280 |
app = DataExplorerApp()
|
|
|
30 |
"""A professional-grade, AI-powered data exploration application."""
|
31 |
|
32 |
def __init__(self):
|
33 |
+
"""Initializes the application and builds the UI and event listeners."""
|
34 |
+
self.demo = self._build_ui()
|
|
|
|
|
35 |
|
36 |
+
def _build_ui(self) -> gr.Blocks:
|
37 |
+
"""
|
38 |
+
Defines all UI components, arranges them in the layout,
|
39 |
+
and registers all event handlers within the same Blocks context.
|
40 |
+
"""
|
41 |
with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="Professional AI Data Explorer") as demo:
|
42 |
# --- State Management ---
|
43 |
+
state_var = gr.State({})
|
44 |
|
45 |
# --- Component Definition ---
|
46 |
# Sidebar
|
47 |
+
cockpit_btn = gr.Button("π Data Cockpit", elem_classes="selected", elem_id="cockpit")
|
48 |
+
deep_dive_btn = gr.Button("π Deep Dive Builder", elem_id="deep_dive")
|
49 |
+
copilot_btn = gr.Button("π€ Chief Data Scientist", elem_id="co-pilot")
|
50 |
+
file_input = gr.File(label="π Upload CSV File", file_types=[".csv"])
|
51 |
+
status_output = gr.Markdown("Status: Awaiting data...")
|
52 |
+
api_key_input = gr.Textbox(label="π Gemini API Key", type="password", placeholder="Enter key to enable AI...")
|
53 |
+
suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
|
54 |
|
55 |
# Cockpit
|
56 |
+
rows_stat, cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
|
57 |
+
quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, elem_classes="stat-card-value"), gr.Textbox("0", interactive=False, elem_classes="stat-card-value")
|
58 |
+
suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
|
|
|
|
|
59 |
|
60 |
# Deep Dive
|
61 |
+
plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
|
62 |
+
x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
|
63 |
+
y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
|
64 |
+
add_plot_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False)
|
65 |
+
clear_plots_btn = gr.Button("Clear Dashboard")
|
66 |
+
dashboard_gallery = gr.Gallery(label="π Your Custom Dashboard", height="auto", columns=2, preview=True)
|
67 |
|
68 |
# Co-pilot
|
69 |
+
chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True)
|
70 |
+
copilot_explanation = gr.Markdown(visible=False, elem_classes="explanation-block")
|
71 |
+
copilot_code = gr.Code(language="python", visible=False, label="Executed Code")
|
72 |
+
copilot_plot = gr.Plot(visible=False, label="Generated Visualization")
|
73 |
+
copilot_table = gr.Dataframe(visible=False, label="Generated Table", wrap=True)
|
74 |
+
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4)
|
75 |
+
chat_submit_btn = gr.Button("Ask AI", variant="primary")
|
76 |
|
77 |
# --- Layout Arrangement ---
|
78 |
with gr.Row():
|
79 |
with gr.Column(scale=1, elem_classes="sidebar"):
|
80 |
+
gr.Markdown("## π AI Explorer Pro"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---")
|
81 |
+
file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
|
|
|
82 |
with gr.Column(scale=4):
|
83 |
+
welcome_page = gr.Column(visible=True)
|
84 |
+
with welcome_page:
|
85 |
gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
|
86 |
+
gr.Image("workflow.png", show_label=False, show_download_button=False, container=False)
|
87 |
+
|
88 |
+
cockpit_page = gr.Column(visible=False)
|
89 |
+
with cockpit_page:
|
90 |
gr.Markdown("## π Data Cockpit: At-a-Glance Overview")
|
91 |
with gr.Row():
|
92 |
+
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Rows</div>"); rows_stat
|
93 |
+
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Columns</div>"); cols_stat
|
94 |
+
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); quality_stat
|
95 |
+
with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); time_cols_stat
|
96 |
+
with gr.Accordion(label="β¨ AI Smart Suggestions", open=True): [btn for btn in suggestion_buttons]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
deep_dive_page = gr.Column(visible=False)
|
99 |
+
with deep_dive_page:
|
100 |
+
gr.Markdown("## π Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct your own visualizations to investigate specific relationships.")
|
101 |
+
with gr.Row(): plot_type_dd; x_col_dd; y_col_dd
|
102 |
+
with gr.Row(): add_plot_btn; clear_plots_btn
|
103 |
+
dashboard_gallery
|
104 |
+
|
105 |
+
copilot_page = gr.Column(visible=False)
|
106 |
+
with copilot_page:
|
107 |
+
gr.Markdown("## π€ Chief Data Scientist: Your AI Partner"); chatbot
|
108 |
+
with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
|
109 |
+
with gr.Row(): chat_input; chat_submit_btn
|
110 |
+
|
111 |
+
# --- Event Handlers Registration (inside the 'with' block) ---
|
112 |
+
pages = [cockpit_page, deep_dive_page, copilot_page]
|
113 |
+
nav_buttons = [cockpit_btn, deep_dive_btn, copilot_btn]
|
114 |
+
|
115 |
+
for i, btn in enumerate(nav_buttons):
|
116 |
+
btn.click(
|
117 |
+
lambda id=btn.elem_id: self._switch_page(id), outputs=pages
|
118 |
+
).then(
|
119 |
+
lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons
|
120 |
+
)
|
121 |
|
122 |
+
file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
|
123 |
+
state_var, status_output, welcome_page, cockpit_page,
|
124 |
+
rows_stat, cols_stat, quality_stat, time_cols_stat,
|
125 |
+
x_col_dd, y_col_dd, add_plot_btn
|
126 |
+
]).then(lambda: self._switch_page("cockpit"), outputs=pages) \
|
127 |
+
.then(lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)
|
|
|
128 |
|
129 |
+
api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
|
|
|
130 |
|
131 |
+
plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd])
|
132 |
+
add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, dashboard_gallery])
|
133 |
+
clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, dashboard_gallery])
|
|
|
134 |
|
135 |
+
suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
|
136 |
+
for btn in suggestion_buttons:
|
137 |
+
btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[cockpit_page, deep_dive_page, copilot_page, chat_input]) \
|
138 |
+
.then(lambda: self._switch_page("co-pilot"), outputs=pages) \
|
139 |
+
.then(lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
|
140 |
+
|
141 |
+
chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
|
142 |
+
chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
|
143 |
|
144 |
+
return demo
|
|
|
145 |
|
146 |
def launch(self):
|
147 |
"""Launches the Gradio application."""
|
148 |
self.demo.launch(debug=True)
|
149 |
|
150 |
# --- Backend Logic Methods ---
|
|
|
151 |
def _switch_page(self, page_id: str) -> Tuple[gr.update, ...]:
|
152 |
return gr.update(visible=page_id=="cockpit"), gr.update(visible=page_id=="deep_dive"), gr.update(visible=page_id=="co-pilot")
|
153 |
|
154 |
def _update_plot_controls(self, plot_type: str) -> gr.update:
|
155 |
+
return gr.update(visible=plot_type in ['scatter', 'box'])
|
|
|
156 |
|
157 |
def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
|
158 |
try:
|
|
|
164 |
metadata = self._extract_dataset_metadata(df)
|
165 |
state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
|
166 |
status_msg = f"β
**{os.path.basename(file_obj.name)}** loaded."
|
|
|
167 |
rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
|
168 |
|
169 |
return (state, status_msg, gr.update(visible=False), gr.update(visible=True),
|
170 |
f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
|
171 |
gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
|
172 |
except Exception as e:
|
173 |
+
gr.Error(f"File Load Error: {e}"); return {}, f"β Error: {e}", gr.update(visible=True), gr.update(visible=False), "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)
|
|
|
174 |
|
175 |
def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
|
176 |
rows, cols = df.shape
|
|
|
181 |
'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
|
182 |
'dtypes_head': df.head().to_string()}
|
183 |
|
184 |
+
def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> Tuple[Dict, List]:
|
185 |
if not x_col:
|
186 |
+
gr.Warning("Please select at least an X-axis column."); return state, state.get('dashboard_plots', [])
|
|
|
187 |
df = state['df']
|
188 |
+
title = f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col and plot_type in ['box', 'scatter'] else f"Distribution of {x_col}"
|
189 |
try:
|
190 |
if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
|
191 |
elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
|
|
|
194 |
counts = df[x_col].value_counts().nlargest(20)
|
195 |
fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'})
|
196 |
if fig:
|
197 |
+
fig.update_layout(template="plotly_dark"); state['dashboard_plots'].append(fig); gr.Info(f"Added '{title}' to the dashboard.")
|
|
|
|
|
198 |
return state, state['dashboard_plots']
|
199 |
except Exception as e:
|
200 |
gr.Error(f"Plotting Error: {e}"); return state, state.get('dashboard_plots', [])
|
201 |
|
202 |
def clear_dashboard(self, state: Dict) -> Tuple[Dict, List]:
|
203 |
+
state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return state, []
|
|
|
|
|
204 |
|
205 |
def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
|
206 |
if not api_key: gr.Warning("API Key is required for suggestions."); return [gr.update(visible=False)]*5
|
|
|
216 |
def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
|
217 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question
|
218 |
|
219 |
+
def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
|
220 |
if not api_key or not state:
|
221 |
+
msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
|
|
|
222 |
|
223 |
history.append((user_message, "Thinking... π€")); yield history, *[gr.update(visible=False)]*4
|
224 |
|
225 |
+
metadata, prompt = state['metadata'], f"""You are 'Chief Data Scientist', an expert AI analyst...
|
|
|
|
|
226 |
**Instructions:**
|
227 |
+
1. **Analyze:** Understand the user's intent.
|
228 |
+
2. **Method:** Choose the best method (table, value, or plot). Infer the best plot type.
|
229 |
+
3. **Plan:** Briefly explain your plan.
|
230 |
+
4. **Code:** Write Python code. Use `fig` for plots (with `template='plotly_dark'`) and `result_df` for tables.
|
231 |
+
5. **Insight:** Provide a one-sentence business insight.
|
232 |
+
6. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
|
233 |
+
**Metadata:** {metadata['dtypes_head']}
|
|
|
|
|
|
|
234 |
**User Question:** "{user_message}"
|
235 |
"""
|
236 |
try:
|
237 |
genai.configure(api_key=api_key)
|
238 |
response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
|
239 |
+
plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
|
240 |
+
stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
|
241 |
|
|
|
|
|
242 |
history[-1] = (user_message, f"**Plan:** {plan}")
|
|
|
243 |
explanation = f"**Insight:** {insight}"
|
244 |
if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```"
|
245 |
if error: gr.Error(f"AI Code Execution Failed: {error}")
|
246 |
|
247 |
+
yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code),
|
248 |
+
gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result))
|
249 |
except Exception as e:
|
250 |
+
history[-1] = (user_message, f"I encountered an error. Please rephrase your question. (Error: {e})")
|
251 |
yield history, *[gr.update(visible=False)]*4
|
252 |
|
253 |
def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
|
|
|
255 |
try:
|
256 |
with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
|
257 |
return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None
|
258 |
+
except Exception as e: return None, None, None, str(e)
|
259 |
|
260 |
if __name__ == "__main__":
|
261 |
app = DataExplorerApp()
|