Spaces:
Sleeping
Sleeping
File size: 4,508 Bytes
dd9dfb2 a0a78d2 dd9dfb2 1cc90f6 dd9dfb2 1cc90f6 dd9dfb2 1cc90f6 dd9dfb2 1cc90f6 dd9dfb2 2d643fe dd9dfb2 89da890 dd9dfb2 1cc90f6 dd9dfb2 1cc90f6 dd9dfb2 89da890 dd9dfb2 1cc90f6 dd9dfb2 89da890 dd9dfb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# algoforge_prime/core/evolution_engine.py
print("DEBUG: Importing core.evolution_engine")
# --- Corrected Imports ---
# Absolute imports for modules outside the 'core' package
from prompts.system_prompts import get_system_prompt
# Absolute imports for other modules within the 'core' package (or relative for siblings)
from core.llm_clients import call_huggingface_api, call_gemini_api, LLMResponse
# Relative import for a sibling module within the 'core' package
# from .safe_executor import ExecutionResult # Not directly used in this module, but evaluation_output_obj might contain it
# from .evaluation_engine import EvaluationResultOutput # For type hinting the parameter
print("DEBUG: core.evolution_engine - Imports successful")
def evolve_solution(
original_solution_text: str,
evaluation_output_obj, # This object comes from evaluation_engine and contains EvaluationResultOutput
# It will have a .get_display_critique() method and .combined_score attribute
problem_description: str,
problem_type: str,
llm_client_config: dict # {"type": ..., "model_id": ..., "temp": ..., "max_tokens": ...}
) -> str: # Returns evolved solution text or an error string
"""
Attempts to evolve a solution based on its comprehensive evaluation details.
"""
print(f"DEBUG: evolution_engine.py - Evolving solution. Problem type: {problem_type}")
system_p_evolve = get_system_prompt("evolution_general") # problem_type can be used for specialization here too
# Extract necessary info from the evaluation_output_obj
# This assumes evaluation_output_obj is an instance of EvaluationResultOutput from evaluation_engine.py
# or at least has these attributes/methods.
try:
critique_and_test_feedback = evaluation_output_obj.get_display_critique()
original_score = evaluation_output_obj.combined_score
except AttributeError as e:
print(f"ERROR: evolution_engine.py - evaluation_output_obj is missing expected attributes/methods: {e}")
# Fallback if the object structure is not as expected
critique_and_test_feedback = "Critique data was not in the expected format."
original_score = 0 # Assign a neutral score if real one can't be found
user_p_evolve = (
f"Original Problem Context: \"{problem_description}\"\n\n"
f"The solution to be evolved achieved a combined score of {original_score}/10.\n"
f"Here is the original solution text:\n```python\n{original_solution_text}\n```\n\n"
f"Here is the comprehensive evaluation it received (including LLM critique and automated test feedback if run):\n'''\n{critique_and_test_feedback}\n'''\n\n"
f"Your Task: Based on ALL the information above (solution, LLM critique, and crucially any test execution results/errors mentioned in the evaluation), "
f"evolve the provided solution to make it demonstrably superior. "
f"Prioritize fixing any reported execution errors or failed tests. "
f"Then, address other critique points like efficiency, clarity, or completeness. "
f"Output the *complete evolved solution*. "
f"Follow this with a brief explanation of the key changes and improvements you implemented, especially how you addressed test failures or execution issues."
)
llm_response_obj = None # type: LLMResponse
if llm_client_config["type"] == "hf":
llm_response_obj = call_huggingface_api(
user_p_evolve, llm_client_config["model_id"],
temperature=llm_client_config["temp"], max_new_tokens=llm_client_config["max_tokens"],
system_prompt_text=system_p_evolve
)
elif llm_client_config["type"] == "google_gemini":
llm_response_obj = call_gemini_api(
user_p_evolve, llm_client_config["model_id"],
temperature=llm_client_config["temp"], max_new_tokens=llm_client_config["max_tokens"],
system_prompt_text=system_p_evolve
)
else:
error_msg = f"ERROR (Evolution): Unknown LLM client type '{llm_client_config['type']}'"
print(f"ERROR: evolution_engine.py - {error_msg}")
return error_msg
if llm_response_obj.success:
return llm_response_obj.text
else:
# Error is already logged by call_..._api functions if it's from there
return f"ERROR (Evolution with {llm_response_obj.model_id_used}): {llm_response_obj.error}"
print("DEBUG: core.evolution_engine - Module fully defined.") |