Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient # Still needed for HF fallbacks | |
import google.generativeai as genai # For Google Gemini API | |
import os | |
import random | |
# --- ALGOFORGE PRIME™ CONFIGURATION & SECRETS --- | |
# Google API Key - ESSENTIAL for Google Gemini Pro/Flash models via their API | |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
GEMINI_API_CONFIGURED = False | |
if GOOGLE_API_KEY: | |
try: | |
genai.configure(api_key=GOOGLE_API_KEY) | |
GEMINI_API_CONFIGURED = True | |
print("INFO: Google Gemini API configured successfully.") | |
except Exception as e: | |
print(f"ERROR: Failed to configure Google Gemini API with provided key: {e}. Gemini models will be unavailable.") | |
# GOOGLE_API_KEY = None # Effectively disables it if config fails | |
else: | |
print("WARNING: GOOGLE_API_KEY not found in Space Secrets. Google Gemini API models will be disabled.") | |
# Hugging Face Token - For Hugging Face hosted models (fallbacks or alternatives) | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
HF_API_CONFIGURED = False | |
if not HF_TOKEN: | |
print("WARNING: HF_TOKEN not found in Space Secrets. Calls to Hugging Face hosted models will be disabled.") | |
else: | |
HF_API_CONFIGURED = True | |
print("INFO: HF_TOKEN detected. Hugging Face hosted models can be used.") | |
# Initialize Hugging Face Inference Client (conditionally) | |
hf_inference_client = None | |
if HF_API_CONFIGURED: | |
try: | |
hf_inference_client = InferenceClient(token=HF_TOKEN) | |
print("INFO: Hugging Face InferenceClient initialized successfully.") | |
except Exception as e: | |
print(f"ERROR: Failed to initialize Hugging Face InferenceClient: {e}. HF models will be unavailable.") | |
HF_API_CONFIGURED = False # Mark as not configured if client init fails | |
# --- MODEL DEFINITIONS --- | |
AVAILABLE_MODELS = {} | |
DEFAULT_MODEL_KEY = None | |
# Populate with Gemini models if API is configured | |
if GEMINI_API_CONFIGURED: | |
AVAILABLE_MODELS.update({ | |
"Google Gemini 1.5 Flash (API - Fast, Recommended)": {"id": "gemini-1.5-flash-latest", "type": "google_gemini"}, | |
"Google Gemini 1.0 Pro (API)": {"id": "gemini-1.0-pro-latest", "type": "google_gemini"}, | |
}) | |
DEFAULT_MODEL_KEY = "Google Gemini 1.5 Flash (API - Fast, Recommended)" | |
# Populate with Hugging Face models if API is configured (as alternatives/fallbacks) | |
if HF_API_CONFIGURED: | |
AVAILABLE_MODELS.update({ | |
"Google Gemma 2B (HF - Quick Test)": {"id": "google/gemma-2b-it", "type": "hf"}, | |
"Mistral 7B Instruct (HF)": {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf"}, | |
"CodeLlama 7B Instruct (HF)": {"id": "codellama/CodeLlama-7b-Instruct-hf", "type": "hf"}, | |
}) | |
if not DEFAULT_MODEL_KEY: # If Gemini isn't configured, default to an HF model | |
DEFAULT_MODEL_KEY = "Google Gemma 2B (HF - Quick Test)" | |
# Absolute fallback if no models could be configured | |
if not AVAILABLE_MODELS: | |
print("CRITICAL ERROR: No models could be configured. Neither Google API Key nor HF Token seem to be working or present.") | |
# Add a dummy entry to prevent crashes, though the app will be non-functional | |
AVAILABLE_MODELS["No Models Available"] = {"id": "dummy", "type": "none"} | |
DEFAULT_MODEL_KEY = "No Models Available" | |
elif not DEFAULT_MODEL_KEY: # If somehow DEFAULT_MODEL_KEY is still None but AVAILABLE_MODELS is not empty | |
DEFAULT_MODEL_KEY = list(AVAILABLE_MODELS.keys())[0] | |
# --- CORE AI ENGINEERING: LLM INTERACTION FUNCTIONS --- | |
def call_huggingface_llm_api(prompt_text, model_id, temperature=0.7, max_new_tokens=350, system_prompt=None): | |
if not HF_API_CONFIGURED or not hf_inference_client: | |
return "ERROR: Hugging Face API is not configured (HF_TOKEN missing or client init failed)." | |
if system_prompt: | |
full_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{prompt_text} [/INST]" | |
else: | |
full_prompt = prompt_text | |
try: | |
use_sample = temperature > 0.0 | |
response_text = hf_inference_client.text_generation( | |
full_prompt, model=model_id, max_new_tokens=max_new_tokens, | |
temperature=temperature if use_sample else None, | |
do_sample=use_sample, stream=False | |
) | |
return response_text | |
except Exception as e: | |
error_details = f"Error Type: {type(e).__name__}, Message: {str(e)}" | |
print(f"Hugging Face LLM API Call Error ({model_id}): {error_details}") | |
return f"LLM API Error (Hugging Face Model: {model_id}). Details: {error_details}. Check Space logs." | |
def call_google_gemini_api(prompt_text, model_id, temperature=0.7, max_new_tokens=400, system_prompt=None): | |
if not GEMINI_API_CONFIGURED: | |
return "ERROR: Google Gemini API is not configured (GOOGLE_API_KEY missing or config failed)." | |
try: | |
# For gemini-1.5-flash and newer, system_instruction is the preferred way. | |
# For older gemini-1.0-pro, you might need to structure the 'contents' array. | |
model_instance = genai.GenerativeModel(model_name=model_id, system_instruction=system_prompt if system_prompt else None) | |
generation_config = genai.types.GenerationConfig( | |
temperature=temperature, | |
max_output_tokens=max_new_tokens | |
) | |
# Simple user prompt if system_instruction is handled by GenerativeModel | |
response = model_instance.generate_content( | |
prompt_text, # Just the user prompt | |
generation_config=generation_config, | |
stream=False | |
) | |
# Robust check for response content and safety blocks | |
if response.prompt_feedback and response.prompt_feedback.block_reason: | |
block_reason_msg = response.prompt_feedback.block_reason_message or response.prompt_feedback.block_reason | |
print(f"Google Gemini API: Prompt blocked. Reason: {block_reason_msg}") | |
return f"Google Gemini API Error: Your prompt was blocked. Reason: {block_reason_msg}. Try rephrasing." | |
if not response.candidates or not response.candidates[0].content.parts: | |
# Check if any candidate has content | |
candidate_had_content = any(cand.content and cand.content.parts for cand in response.candidates) | |
if not candidate_had_content: | |
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown" | |
# Specific check for safety if that's the finish reason | |
if str(finish_reason).upper() == "SAFETY": | |
print(f"Google Gemini API: Response generation stopped due to safety settings. Finish Reason: {finish_reason}") | |
return f"Google Gemini API Error: Response generation stopped due to safety settings. Finish Reason: {finish_reason}. Try a different prompt or adjust safety settings in your Google AI Studio if possible." | |
else: | |
print(f"Google Gemini API: Empty response or no content parts. Finish Reason: {finish_reason}") | |
return f"Google Gemini API Error: Empty response or no content generated. Finish Reason: {finish_reason}. The model might not have had anything to say or the request was malformed." | |
# Assuming the first candidate has the primary response | |
return response.candidates[0].content.parts[0].text | |
except Exception as e: | |
error_details = f"Error Type: {type(e).__name__}, Message: {str(e)}" | |
print(f"Google Gemini API Call Error ({model_id}): {error_details}") | |
# Provide more specific feedback for common errors if possible | |
if "API key not valid" in str(e) or "PERMISSION_DENIED" in str(e): | |
return f"LLM API Error (Google Gemini Model: {model_id}). Details: API key invalid or permission denied. Please check your GOOGLE_API_KEY and ensure the Gemini API is enabled for your project. Original error: {error_details}" | |
elif "Could not find model" in str(e): | |
return f"LLM API Error (Google Gemini Model: {model_id}). Details: Model ID '{model_id}' not found or not accessible with your key. Original error: {error_details}" | |
return f"LLM API Error (Google Gemini Model: {model_id}). Details: {error_details}. Check Space logs." | |
# --- ALGOFORGE PRIME™ - THE GRAND ORCHESTRATOR --- | |
# (This function remains largely the same as the previous "full rewrite", | |
# as the dispatch_llm_call logic handles routing to the correct API call function. | |
# I will include it for completeness but highlight any minor adjustments if needed.) | |
def run_algoforge_simulation( | |
problem_type, problem_description, initial_hints, | |
num_initial_solutions, selected_model_key, | |
gen_temp, gen_max_tokens, | |
eval_temp, eval_max_tokens, | |
evolve_temp, evolve_max_tokens | |
): | |
if not problem_description: | |
return "ERROR: Problem Description is the lifeblood of innovation! Please provide it.", "", "", "" | |
model_info = AVAILABLE_MODELS.get(selected_model_key) | |
if not model_info or model_info["type"] == "none": | |
return f"ERROR: No valid model selected or available. Please check API key configurations. Selected: '{selected_model_key}'", "", "", "" | |
model_id = model_info["id"] | |
model_type = model_info["type"] | |
log_entries = [f"**AlgoForge Prime™ Initializing...**\nSelected Model Core: {model_id} ({selected_model_key} - Type: {model_type})\nProblem Type: {problem_type}"] | |
def dispatch_llm_call(prompt, system_p, temp, max_tok, stage_name=""): | |
log_entries.append(f" Dispatching to {model_type.upper()} API for {stage_name} (Model: {model_id}):\n Prompt (snippet): {prompt[:100]}...") | |
if system_p: log_entries[-1] += f"\n System Prompt (snippet): {system_p[:100]}..." | |
if model_type == "hf": | |
if not HF_API_CONFIGURED: return "ERROR: HF_TOKEN not configured or InferenceClient failed." | |
result = call_huggingface_llm_api(prompt, model_id, temp, max_tok, system_p) | |
elif model_type == "google_gemini": | |
if not GEMINI_API_CONFIGURED: return "ERROR: GOOGLE_API_KEY not configured or Gemini API setup failed." | |
result = call_google_gemini_api(prompt, model_id, temp, max_tok, system_p) | |
else: | |
result = f"ERROR: Unknown model type '{model_type}' for selected model." | |
log_entries.append(f" {model_type.upper()} API Response ({stage_name} - Snippet): {str(result)[:150]}...") | |
return result | |
# STAGE 1: GENESIS | |
log_entries.append("\n**Stage 1: Genesis Engine - Generating Initial Solution Candidates...**") | |
generated_solutions_raw = [] | |
system_prompt_generate = f"You are an expert {problem_type.lower().replace(' ', '_')} algorithm designer. Your goal is to brainstorm multiple diverse solutions to the user's problem." | |
for i in range(num_initial_solutions): | |
user_prompt_generate = ( | |
f"Problem Description: \"{problem_description}\"\n" | |
f"Consider these initial thoughts/constraints: \"{initial_hints if initial_hints else 'None'}\"\n" | |
f"Please provide one distinct and complete solution/algorithm for this problem. " | |
f"This is solution attempt #{i+1} of {num_initial_solutions}. Try a different approach if possible." | |
) | |
solution_text = dispatch_llm_call(user_prompt_generate, system_prompt_generate, gen_temp, gen_max_tokens, f"Genesis Attempt {i+1}") | |
generated_solutions_raw.append(solution_text) | |
if not any(sol and not str(sol).startswith("ERROR:") and not str(sol).startswith("LLM API Error") for sol in generated_solutions_raw): | |
log_entries.append(" Genesis Engine failed to produce viable candidates or all calls resulted in errors.") | |
initial_sol_output = "No valid solutions generated by the Genesis Engine. All attempts failed or returned errors." | |
if generated_solutions_raw: | |
initial_sol_output += "\n\nErrors Encountered:\n" + "\n".join([f"- {str(s)}" for s in generated_solutions_raw if str(s).startswith("ERROR") or str(s).startswith("LLM API Error")]) | |
return initial_sol_output, "", "", "\n".join(log_entries) | |
# STAGE 2: CRITIQUE | |
log_entries.append("\n**Stage 2: Critique Crucible - Evaluating Candidates...**") | |
evaluated_solutions_display = [] | |
evaluated_sols_data = [] | |
system_prompt_evaluate = "You are a highly critical and insightful AI algorithm evaluator. Assess the provided solution based on clarity, potential correctness, and perceived efficiency. Provide a concise critique and a numerical score from 1 (poor) to 10 (excellent). CRITICALLY: You MUST include the score in the format 'Score: X/10' where X is an integer." | |
for i, sol_text_candidate in enumerate(generated_solutions_raw): | |
sol_text = str(sol_text_candidate) | |
critique_text = f"Critique for Candidate {i+1}" # Placeholder | |
score = 0 | |
if sol_text.startswith("ERROR:") or sol_text.startswith("LLM API Error"): | |
critique_text = f"Candidate {i+1} could not be properly generated due to an earlier API error: {sol_text}" | |
score = 0 | |
else: | |
user_prompt_evaluate = ( | |
f"Problem Reference (for context only, do not repeat in output): \"{problem_description[:150]}...\"\n\n" | |
f"Now, evaluate the following proposed solution:\n```\n{sol_text}\n```\n" | |
f"Provide your critique and ensure you output a score in the format 'Score: X/10'." | |
) | |
evaluation_text = str(dispatch_llm_call(user_prompt_evaluate, system_prompt_evaluate, eval_temp, eval_max_tokens, f"Critique Candidate {i+1}")) | |
critique_text = evaluation_text # Default to full response | |
if evaluation_text.startswith("ERROR:") or evaluation_text.startswith("LLM API Error"): | |
critique_text = f"Error during evaluation of Candidate {i+1}: {evaluation_text}" | |
score = 0 | |
else: | |
# Try to parse score | |
score_match_found = False | |
if "Score:" in evaluation_text: | |
try: | |
# More robust parsing for "Score: X/10" or "Score: X" | |
score_part_full = evaluation_text.split("Score:")[1].strip() | |
score_num_str = score_part_full.split("/")[0].split()[0].strip() # Get number before / or space | |
parsed_score_val = int(score_num_str) | |
score = max(1, min(parsed_score_val, 10)) # Clamp score | |
score_match_found = True | |
except (ValueError, IndexError, TypeError): | |
log_entries.append(f" Warning: Could not parse score accurately from: '{evaluation_text}' despite 'Score:' marker.") | |
if not score_match_found: # Fallback if parsing fails or marker missing | |
log_entries.append(f" Warning: 'Score:' marker missing or unparsable in evaluation: '{evaluation_text}'. Assigning random score.") | |
score = random.randint(3, 7) | |
evaluated_solutions_display.append(f"**Candidate {i+1}:**\n```text\n{sol_text}\n```\n**Crucible Verdict (Score: {score}/10):**\n{critique_text}\n---") | |
evaluated_sols_data.append({"id": i+1, "solution": sol_text, "score": score, "critique": critique_text}) | |
if not evaluated_sols_data or all(s['score'] == 0 for s in evaluated_sols_data): | |
log_entries.append(" Critique Crucible yielded no valid evaluations or all solutions had errors.") | |
current_output = "\n\n".join(evaluated_solutions_display) if evaluated_solutions_display else "Generation might be OK, but evaluation failed for all candidates." | |
return current_output, "", "", "\n".join(log_entries) | |
# STAGE 3: SELECTION | |
evaluated_sols_data.sort(key=lambda x: x["score"], reverse=True) | |
best_initial_solution_data = evaluated_sols_data[0] | |
log_entries.append(f"\n**Stage 3: Champion Selected - Candidate {best_initial_solution_data['id']} (Score: {best_initial_solution_data['score']}) chosen for evolution.**") | |
if best_initial_solution_data['solution'].startswith("ERROR:") or best_initial_solution_data['solution'].startswith("LLM API Error"): | |
log_entries.append(" ERROR: Selected champion solution itself is an error message. Cannot evolve.") | |
return "\n\n".join(evaluated_solutions_display), f"Selected champion was an error: {best_initial_solution_data['solution']}", "Cannot evolve an error.", "\n".join(log_entries) | |
# STAGE 4: EVOLUTION | |
log_entries.append("\n**Stage 4: Evolutionary Forge - Refining the Champion...**") | |
system_prompt_evolve = f"You are an elite AI algorithm optimizer and refiner. Your task is to take the provided solution and make it significantly better. Focus on {problem_type.lower()} best practices, improve efficiency or clarity, fix any potential errors, and expand on it if appropriate. Explain the key improvements you've made clearly." | |
user_prompt_evolve = ( | |
f"Original Problem (for context): \"{problem_description}\"\n\n" | |
f"The current leading solution (which had a score of {best_initial_solution_data['score']}/10) is:\n```\n{best_initial_solution_data['solution']}\n```\n" | |
f"The original critique for this solution was: \"{best_initial_solution_data['critique']}\"\n\n" | |
f"Your mission: Evolve this solution. Make it demonstrably superior. If the original solution was just a sketch, flesh it out. If it had flaws, fix them. If it was good, make it great. Explain the key improvements you've made as part of your response." | |
) | |
evolved_solution_text = str(dispatch_llm_call(user_prompt_evolve, system_prompt_evolve, evolve_temp, evolve_max_tokens, "Evolution")) | |
if evolved_solution_text.startswith("ERROR:") or evolved_solution_text.startswith("LLM API Error"): | |
log_entries.append(" ERROR: Evolution step resulted in an API error.") | |
evolved_solution_output_md = f"**Evolution Failed:**\n{evolved_solution_text}" | |
else: | |
evolved_solution_output_md = f"**✨ AlgoForge Prime™ Evolved Artifact ✨:**\n```text\n{evolved_solution_text}\n```" | |
# FINAL OUTPUT ASSEMBLY | |
initial_solutions_output_md = "\n\n".join(evaluated_solutions_display) | |
best_solution_output_md = ( | |
f"**Champion Candidate {best_initial_solution_data['id']} (Original Score: {best_initial_solution_data['score']}/10):**\n" | |
f"```text\n{best_initial_solution_data['solution']}\n```\n" | |
f"**Original Crucible Verdict:**\n{best_initial_solution_data['critique']}" | |
) | |
log_entries.append("\n**AlgoForge Prime™ Cycle Complete.**") | |
final_log_output = "\n".join(log_entries) | |
return initial_solutions_output_md, best_solution_output_md, evolved_solution_output_md, final_log_output | |
# --- GRADIO UI --- | |
intro_markdown = """ | |
# ✨ AlgoForge Prime™ ✨: Conceptual Algorithmic Evolution (Gemini Focused) | |
Welcome! This system demonstrates AI-assisted algorithm discovery and refinement, with a primary focus on **Google Gemini API models**. | |
Hugging Face hosted models are available as alternatives if configured. | |
**This is a conceptual demo, not AlphaEvolve itself.** | |
**API Keys Required in Space Secrets:** | |
- `GOOGLE_API_KEY` (Primary): For Google Gemini API models (e.g., Gemini 1.5 Flash, Gemini 1.0 Pro). | |
- `HF_TOKEN` (Secondary): For Hugging Face hosted models (e.g., Gemma on HF, Mistral). | |
If a key is missing, corresponding models will be unusable or limited. | |
""" | |
token_status_md = "" | |
if not GEMINI_API_CONFIGURED and not HF_API_CONFIGURED: | |
token_status_md = "<p style='color:red;'>⚠️ CRITICAL: NEITHER GOOGLE_API_KEY NOR HF_TOKEN are configured or working. The application will not function.</p>" | |
else: | |
if GEMINI_API_CONFIGURED: | |
token_status_md += "<p style='color:green;'>✅ Google Gemini API Key detected and configured.</p>" | |
else: | |
token_status_md += "<p style='color:orange;'>⚠️ GOOGLE_API_KEY missing or failed to configure. Gemini API models disabled.</p>" | |
if HF_API_CONFIGURED: | |
token_status_md += "<p style='color:green;'>✅ Hugging Face API Token detected and client initialized.</p>" | |
else: | |
token_status_md += "<p style='color:orange;'>⚠️ HF_TOKEN missing or client failed to initialize. Hugging Face models disabled.</p>" | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="AlgoForge Prime™ (Gemini)") as demo: # Changed theme | |
gr.Markdown(intro_markdown) | |
gr.HTML(token_status_md) | |
if not AVAILABLE_MODELS or DEFAULT_MODEL_KEY == "No Models Available": | |
gr.Markdown("<h2 style='color:red;'>No models are available. Please check your API key configurations in Space Secrets and restart the Space.</h2>") | |
else: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## 💡 1. Define the Challenge") | |
problem_type_dd = gr.Dropdown( | |
["Python Algorithm", "Data Structure Logic", "Mathematical Optimization", "Conceptual System Design", "Pseudocode Refinement", "Verilog Snippet Idea", "General Brainstorming"], | |
label="Type of Problem/Algorithm", value="Python Algorithm" | |
) | |
problem_desc_tb = gr.Textbox( | |
lines=5, label="Problem Description / Desired Outcome", | |
placeholder="e.g., 'Efficient Python function for Fibonacci sequence using memoization.'" | |
) | |
initial_hints_tb = gr.Textbox( | |
lines=3, label="Initial Thoughts / Constraints / Seed Ideas (Optional)", | |
placeholder="e.g., 'Focus on clarity and correctness.' OR 'Target O(n) complexity.'" | |
) | |
gr.Markdown("## ⚙️ 2. Configure The Forge") | |
model_select_dd = gr.Dropdown( | |
choices=list(AVAILABLE_MODELS.keys()), | |
value=DEFAULT_MODEL_KEY if DEFAULT_MODEL_KEY in AVAILABLE_MODELS else (list(AVAILABLE_MODELS.keys())[0] if AVAILABLE_MODELS else None), # Ensure default is valid | |
label="Select LLM Core Model" | |
) | |
num_solutions_slider = gr.Slider(1, 4, value=2, step=1, label="Number of Initial Solutions (Genesis Engine)") | |
with gr.Accordion("Advanced LLM Parameters", open=False): | |
with gr.Row(): | |
gen_temp_slider = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Genesis Temp") # Gemini often uses 0-1 range | |
gen_max_tokens_slider = gr.Slider(100, 2048, value=512, step=64, label="Genesis Max Tokens") | |
with gr.Row(): | |
eval_temp_slider = gr.Slider(0.0, 1.0, value=0.4, step=0.05, label="Crucible Temp") | |
eval_max_tokens_slider = gr.Slider(100, 1024, value=300, step=64, label="Crucible Max Tokens") | |
with gr.Row(): | |
evolve_temp_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Evolution Temp") | |
evolve_max_tokens_slider = gr.Slider(100, 2048, value=768, step=64, label="Evolution Max Tokens") | |
submit_btn = gr.Button("🚀 ENGAGE ALGOFORGE PRIME™ 🚀", variant="primary", size="lg") | |
with gr.Column(scale=2): | |
gr.Markdown("## 🔥 3. The Forge's Output") | |
with gr.Tabs(): | |
with gr.TabItem("📜 Genesis Candidates & Crucible Verdicts"): | |
output_initial_solutions_md = gr.Markdown(label="LLM-Generated Initial Solutions & Evaluations") | |
with gr.TabItem("🏆 Champion Candidate (Pre-Evolution)"): | |
output_best_solution_md = gr.Markdown(label="Evaluator's Top Pick") | |
with gr.TabItem("🌟 Evolved Artifact"): | |
output_evolved_solution_md = gr.Markdown(label="Refined Solution from the Evolutionary Forge") | |
with gr.TabItem("🛠️ Interaction Log (Dev View)"): | |
output_interaction_log_md = gr.Markdown(label="Detailed Log of LLM Prompts & Responses") | |
submit_btn.click( | |
fn=run_algoforge_simulation, | |
inputs=[ | |
problem_type_dd, problem_desc_tb, initial_hints_tb, | |
num_solutions_slider, model_select_dd, | |
gen_temp_slider, gen_max_tokens_slider, | |
eval_temp_slider, eval_max_tokens_slider, | |
evolve_temp_slider, evolve_max_tokens_slider | |
], | |
outputs=[ | |
output_initial_solutions_md, output_best_solution_md, | |
output_evolved_solution_md, output_interaction_log_md | |
] | |
) | |
gr.Markdown("---") | |
gr.Markdown( | |
"**Disclaimer:** This is a conceptual demo. LLM outputs require rigorous human oversight. Use for inspiration and exploration." | |
"\n*Powered by Gradio, Google Gemini API, Hugging Face Inference API, and innovation.*" | |
) | |
if __name__ == "__main__": | |
print("="*80) | |
print("AlgoForge Prime™ (Gemini Focused) Starting...") | |
if not GEMINI_API_CONFIGURED: print("REMINDER: GOOGLE_API_KEY missing or config failed. Gemini API models disabled.") | |
if not HF_API_CONFIGURED: print("REMINDER: HF_TOKEN missing or client init failed. Hugging Face models disabled.") | |
if not GEMINI_API_CONFIGURED and not HF_API_CONFIGURED: print("CRITICAL: NEITHER API IS CONFIGURED. APP WILL NOT FUNCTION.") | |
print(f"UI will attempt to default to model key: {DEFAULT_MODEL_KEY}") | |
print(f"Available models for UI: {list(AVAILABLE_MODELS.keys())}") | |
print("="*80) | |
demo.launch(debug=True, server_name="0.0.0.0") |