File size: 14,257 Bytes
23d48f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# app.py
import streamlit as st
import json
import re
import os
from dotenv import load_dotenv
# Import agent logic and message types
from agent import ClinicalAgent, AgentState, check_red_flags # Import necessary components
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
# --- Environment Variable Loading & Validation ---
load_dotenv()
# Check keys required by agent.py are present before initializing the agent
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
missing_keys = []
if not UMLS_API_KEY: missing_keys.append("UMLS_API_KEY")
if not GROQ_API_KEY: missing_keys.append("GROQ_API_KEY")
if not TAVILY_API_KEY: missing_keys.append("TAVILY_API_KEY")
if missing_keys:
st.error(f"Missing required API Key(s): {', '.join(missing_keys)}. Please set them in Hugging Face Space Secrets or environment variables.")
st.stop()
# --- App Configuration ---
class ClinicalAppSettings:
APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
PAGE_LAYOUT = "wide"
# Model name is now primarily defined in agent.py, but can keep for display
MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)"
# --- Streamlit UI ---
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}")
# Initialize session state
if "messages" not in st.session_state: st.session_state.messages = []
if "patient_data" not in st.session_state: st.session_state.patient_data = None
# Summary state for future memory enhancement
if "summary" not in st.session_state: st.session_state.summary = None
# Initialize the agent instance only once
if "agent" not in st.session_state:
try:
st.session_state.agent = ClinicalAgent()
print("ClinicalAgent successfully initialized in Streamlit session state.")
except Exception as e:
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
print(f"ERROR Initializing ClinicalAgent: {e}")
traceback.print_exc()
st.stop()
# --- Patient Data Input Sidebar ---
with st.sidebar:
st.header("π Patient Intake Form")
# Input fields... (Assume full fields as before)
st.subheader("Demographics"); age = st.number_input("Age", 0, 120, 55, key="sb_age"); sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
st.subheader("HPI"); chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc"); hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi"); symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], default=["Nausea", "Diaphoresis"], key="sb_sym")
st.subheader("History"); pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh"); psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
st.subheader("Meds & Allergies"); current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily", key="sb_meds"); allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
st.subheader("Social/Family"); social_history = st.text_area("SH", "Smoker", key="sb_sh"); family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
st.subheader("Vitals & Exam"); col1, col2 = st.columns(2);
with col1: temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp"); hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr"); rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
with col2: bp_mmhg = st.text_input("BP", "155/90", key="sb_bp"); spo2_percent = st.number_input("SpO2", 70, 100, 96, key="sb_spo2"); pain_scale = st.slider("Pain", 0, 10, 8, key="sb_pain")
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50, key="sb_exam")
if st.button("Start/Update Consultation", key="sb_start"):
# Compile data...
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
current_med_names_only = [];
for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", med);
if match: current_med_names_only.append(match.group(1).lower())
allergies_list = []
for a in allergies_str.split(','): cleaned_allergy = a.strip();
if cleaned_allergy: match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy); name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower(); allergies_list.append(name_part)
# Update patient data in session state
st.session_state.patient_data = { "demographics": {"age": age, "sex": sex}, "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, "pmh": {"conditions": pmh}, "psh": {"procedures": psh}, "medications": {"current": current_meds_list, "names_only": current_med_names_only}, "allergies": allergies_list, "social_history": {"details": social_history}, "family_history": {"details": family_history}, "vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale}, "exam_findings": {"notes": exam_notes} }
# Call check_red_flags from agent module
red_flags = check_red_flags(st.session_state.patient_data); st.sidebar.markdown("---");
if red_flags: st.sidebar.warning("**Initial Red Flags:**"); [st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
else: st.sidebar.success("No immediate red flags.")
# Reset conversation and summary on new intake
initial_prompt = "Initiate consultation. Review patient data and begin analysis."
st.session_state.messages = [HumanMessage(content=initial_prompt)]
st.session_state.summary = None # Reset summary
st.success("Patient data loaded/updated.")
# Rerun might be needed if the main area should clear or update based on new data
st.rerun()
# --- Main Chat Interface Area ---
st.header("π¬ Clinical Consultation")
# Display loop - Uses messages from st.session_state
for msg in st.session_state.messages: # Removed enumerate and key
if isinstance(msg, HumanMessage):
with st.chat_message("user"): st.markdown(msg.content)
elif isinstance(msg, AIMessage):
with st.chat_message("assistant"):
# ... (Keep the detailed AI message display logic, including JSON parsing) ...
ai_content = msg.content; structured_output = None
try: # JSON Parsing logic...
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
if json_match: json_str = json_match.group(1); prefix = ai_content[:json_match.start()].strip(); suffix = ai_content[json_match.end():].strip();
if prefix: st.markdown(prefix); structured_output = json.loads(json_str);
if suffix: st.markdown(suffix)
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): structured_output = json.loads(ai_content); ai_content = ""
else: st.markdown(ai_content) # Display non-JSON content
except Exception as e: st.markdown(ai_content); print(f"Error parsing/displaying AI JSON: {e}")
if structured_output and isinstance(structured_output, dict): # Structured JSON display logic...
st.divider(); st.subheader("π AI Analysis & Recommendations")
# ... (Keep detailed JSON display logic for assessment, ddx, plan, etc.) ...
cols = st.columns(2);
with cols[0]: st.markdown("**Assessment:**"); st.markdown(f"> {structured_output.get('assessment', 'N/A')}"); st.markdown("**Differential Diagnosis:**"); ddx = structured_output.get('differential_diagnosis', []);
if ddx: [st.expander(f"{'π₯π₯π₯'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
else: st.info("No DDx provided."); st.markdown("**Risk Assessment:**"); risk = structured_output.get('risk_assessment', {}); flags=risk.get('identified_red_flags',[]); concerns=risk.get("immediate_concerns",[]); comps=risk.get("potential_complications",[])
if flags: st.warning(f"**Flags:** {', '.join(flags)}"); if concerns: st.warning(f"**Concerns:** {', '.join(concerns)}"); if comps: st.info(f"**Potential Complications:** {', '.join(comps)}");
if not flags and not concerns: st.success("No major risks highlighted.")
with cols[1]: st.markdown("**Recommended Plan:**"); plan = structured_output.get('recommended_plan', {});
for section in ["investigations","therapeutics","consultations","patient_education"]: st.markdown(f"_{section.replace('_',' ').capitalize()}:_"); items = plan.get(section); [st.markdown(f"- {item}") for item in items] if items and isinstance(items, list) else (st.markdown(f"- {items}") if items else st.markdown("_None_")); st.markdown("")
st.markdown("**Rationale & Guideline Check:**"); st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}"); interaction_summary = structured_output.get("interaction_check_summary", "");
if interaction_summary: st.markdown("**Interaction Check Summary:**"); st.markdown(f"> {interaction_summary}"); st.divider()
# Tool Call Display
if getattr(msg, 'tool_calls', None):
with st.expander("π οΈ AI requested actions", expanded=False):
if msg.tool_calls:
for tc in msg.tool_calls:
try: st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
except Exception as display_e: st.error(f"Could not display tool call args: {display_e}", icon="β οΈ"); st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
else: st.caption("_No actions requested._")
elif isinstance(msg, ToolMessage):
tool_name_display = getattr(msg, 'name', 'tool_execution')
with st.chat_message(tool_name_display, avatar="π οΈ"):
# ... (Keep ToolMessage display logic) ...
try:
tool_data = json.loads(msg.content); status = tool_data.get("status", "info"); message = tool_data.get("message", msg.content); details = tool_data.get("details"); warnings = tool_data.get("warnings");
if status == "success" or status == "clear" or status == "flagged": st.success(f"{message}", icon="β
" if status != "flagged" else "π¨")
elif status == "warning": st.warning(f"{message}", icon="β οΈ");
if warnings and isinstance(warnings, list): st.caption("Details:"); [st.caption(f"- {warn}") for warn in warnings]
else: st.error(f"{message}", icon="β") # Assume error if not known status
if details: st.caption(f"Details: {details}")
except json.JSONDecodeError: st.info(f"{msg.content}") # Display raw if not JSON
except Exception as e: st.error(f"Error displaying tool message: {e}", icon="β"); st.caption(f"Raw content: {msg.content}")
# --- Chat Input Logic ---
if prompt := st.chat_input("Your message or follow-up query..."):
if not st.session_state.patient_data: st.warning("Please load patient data first."); st.stop()
if not st.session_state.agent: st.error("Agent not initialized. Check logs."); st.stop() # Add check for agent
# Append user message and display immediately
user_message = HumanMessage(content=prompt)
st.session_state.messages.append(user_message)
with st.chat_message("user"): st.markdown(prompt)
# Prepare state for the agent, including existing messages and patient data
current_state_dict = {
"messages": st.session_state.messages,
"patient_data": st.session_state.patient_data,
"summary": st.session_state.get("summary"), # Include summary if implemented
"interaction_warnings": None # Always start turn with no pending warnings
}
# Invoke the agent's graph for one turn
with st.spinner("SynapseAI is thinking..."):
try:
# Call the agent instance's method
final_state = st.session_state.agent.invoke_turn(current_state_dict)
# Update Streamlit session state from the returned agent state
st.session_state.messages = final_state.get('messages', [])
st.session_state.summary = final_state.get('summary') # Update summary if implemented
except Exception as e:
print(f"CRITICAL ERROR during agent invocation: {type(e).__name__} - {e}")
traceback.print_exc()
st.error(f"An error occurred during processing: {e}", icon="β")
# Optionally append an error message to the chat display
# st.session_state.messages.append(AIMessage(content=f"Error processing request: {e}"))
# Rerun Streamlit script to update the chat display
st.rerun()
# Disclaimer
st.markdown("---"); st.warning("**Disclaimer:** SynapseAI is for demonstration...")
if __name__ == "__main__":
main() |