SynapseAI / app.py
mgbam's picture
Update app.py
5f93c27 verified
raw
history blame
37.6 kB
# -*- coding: utf-8 -*-
import streamlit as st
import requests
import json
import re
import os
import operator
import traceback
from functools import lru_cache
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
# from langchain_core.prompts import ChatPromptTemplate # Not explicitly used
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END
from typing import Optional, List, Dict, Any, TypedDict, Annotated
# --- Environment Variable Loading & Validation ---
load_dotenv()
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
missing_keys = []
if not UMLS_API_KEY:
missing_keys.append("UMLS_API_KEY")
if not GROQ_API_KEY:
missing_keys.append("GROQ_API_KEY")
if not TAVILY_API_KEY:
missing_keys.append("TAVILY_API_KEY")
if missing_keys:
st.error(f"Missing API Key(s): {', '.join(missing_keys)}.")
st.stop()
# --- Configuration & Constants ---
class ClinicalAppSettings:
APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
PAGE_LAYOUT = "wide"
MODEL_NAME = "llama3-70b-8192"
TEMPERATURE = 0.1
MAX_SEARCH_RESULTS = 3
class ClinicalPrompts:
SYSTEM_PROMPT = """
You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT REMAINS THE SAME - OMITTED FOR BREVITY]
"""
# --- API Helper Functions (get_rxcui, get_openfda_label, search_text_list) ---
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
@lru_cache(maxsize=256)
def get_rxcui(drug_name: str) -> Optional[str]:
if not drug_name or not isinstance(drug_name, str):
return None
drug_name = drug_name.strip()
if not drug_name:
return None
print(f"RxNorm Lookup for: '{drug_name}'")
try:
params = {"name": drug_name, "search": 1}
response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
response.raise_for_status()
data = response.json()
if data and "idGroup" in data and "rxnormId" in data["idGroup"]:
rxcui = data["idGroup"]["rxnormId"][0]
print(f" Found RxCUI: {rxcui} for '{drug_name}'")
return rxcui
else:
params = {"name": drug_name}
response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10)
response.raise_for_status()
data = response.json()
if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
for group in data["drugGroup"]["conceptGroup"]:
if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
if "conceptProperties" in group and group["conceptProperties"]:
rxcui = group["conceptProperties"][0].get("rxcui")
if rxcui:
print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'")
return rxcui
print(f" RxCUI not found for '{drug_name}'.")
return None
except requests.exceptions.RequestException as e:
print(f" Error fetching RxCUI for '{drug_name}': {e}")
return None
except json.JSONDecodeError as e:
print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}")
return None
except Exception as e:
print(f" Unexpected error in get_rxcui for '{drug_name}': {e}")
return None
@lru_cache(maxsize=128)
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
if not rxcui and not drug_name:
return None
print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}")
search_terms = []
if rxcui:
search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
if drug_name:
search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
search_query = " OR ".join(search_terms)
params = {"search": search_query, "limit": 1}
try:
response = requests.get(OPENFDA_API_BASE, params=params, timeout=15)
response.raise_for_status()
data = response.json()
if data and "results" in data and data["results"]:
print(f" Found OpenFDA label for query: {search_query}")
return data["results"][0]
print(f" No OpenFDA label found for query: {search_query}")
return None
except requests.exceptions.RequestException as e:
print(f" Error fetching OpenFDA label: {e}")
return None
except json.JSONDecodeError as e:
print(f" Error decoding OpenFDA JSON response: {e}")
return None
except Exception as e:
print(f" Unexpected error in get_openfda_label: {e}")
return None
def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
found_snippets = []
if not text_list or not search_terms:
return found_snippets
search_terms_lower = [str(term).lower() for term in search_terms if term]
for text_item in text_list:
if not isinstance(text_item, str):
continue
text_item_lower = text_item.lower()
for term in search_terms_lower:
if term in text_item_lower:
start_index = text_item_lower.find(term)
snippet_start = max(0, start_index - 50)
snippet_end = min(len(text_item), start_index + len(term) + 100)
snippet = text_item[snippet_start:snippet_end]
snippet = snippet.replace(term, f"**{term}**", 1)
found_snippets.append(f"...{snippet}...")
break
return found_snippets
# --- Other Helper Functions (parse_bp, check_red_flags, format_patient_data_for_prompt) ---
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
if not isinstance(bp_string, str):
return None
match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip())
if match:
return int(match.group(1)), int(match.group(2))
return None
def check_red_flags(patient_data: dict) -> List[str]:
flags = []
if not patient_data:
return flags
symptoms = patient_data.get("hpi", {}).get("symptoms", [])
vitals = patient_data.get("vitals", {})
history = patient_data.get("pmh", {}).get("conditions", "")
symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]
if "chest pain" in symptoms_lower:
flags.append("Red Flag: Chest Pain reported.")
if "shortness of breath" in symptoms_lower:
flags.append("Red Flag: Shortness of Breath reported.")
if "severe headache" in symptoms_lower:
flags.append("Red Flag: Severe Headache reported.")
if "sudden vision loss" in symptoms_lower:
flags.append("Red Flag: Sudden Vision Loss reported.")
if "weakness on one side" in symptoms_lower:
flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
if "hemoptysis" in symptoms_lower:
flags.append("Red Flag: Hemoptysis (coughing up blood).")
if "syncope" in symptoms_lower:
flags.append("Red Flag: Syncope (fainting).")
if vitals:
temp = vitals.get("temp_c")
hr = vitals.get("hr_bpm")
rr = vitals.get("rr_rpm")
spo2 = vitals.get("spo2_percent")
bp_str = vitals.get("bp_mmhg")
if temp is not None and temp >= 38.5:
flags.append(f"Red Flag: Fever ({temp}Β°C).")
if hr is not None and hr >= 120:
flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
if hr is not None and hr <= 50:
flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
if rr is not None and rr >= 24:
flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
if spo2 is not None and spo2 <= 92:
flags.append(f"Red Flag: Hypoxia ({spo2}%).")
if bp_str:
bp = parse_bp(bp_str)
if bp:
if bp[0] >= 180 or bp[1] >= 110:
flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
if bp[0] <= 90 or bp[1] <= 60:
flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
if history and isinstance(history, str):
history_lower = history.lower()
if "history of mi" in history_lower and "chest pain" in symptoms_lower:
flags.append("Red Flag: History of MI with current Chest Pain.")
if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower:
flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
return list(set(flags))
def format_patient_data_for_prompt(data: dict) -> str:
if not data:
return "No patient data provided."
prompt_str = ""
for key, value in data.items():
section_title = key.replace('_', ' ').title()
if isinstance(value, dict) and value:
has_content = any(sub_value for sub_value in value.values())
if has_content:
prompt_str += f"**{section_title}:**\n"
for sub_key, sub_value in value.items():
if sub_value:
prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
elif isinstance(value, list) and value:
prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
elif value and not isinstance(value, dict):
prompt_str += f"**{section_title}:** {value}\n"
return prompt_str.strip()
# --- Tool Definitions ---
class LabOrderInput(BaseModel):
test_name: str = Field(...)
reason: str = Field(...)
priority: str = Field("Routine")
class PrescriptionInput(BaseModel):
medication_name: str = Field(...)
dosage: str = Field(...)
route: str = Field(...)
frequency: str = Field(...)
duration: str = Field("As directed")
reason: str = Field(...)
class InteractionCheckInput(BaseModel):
potential_prescription: str = Field(...)
current_medications: Optional[List[str]] = Field(None)
allergies: Optional[List[str]] = Field(None)
class FlagRiskInput(BaseModel):
risk_description: str = Field(...)
urgency: str = Field("High")
@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
"""
Orders a lab test with the specified test name, reason, and priority.
"""
print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}")
return json.dumps({
"status": "success",
"message": f"Lab Ordered: {test_name} ({priority})",
"details": f"Reason: {reason}"
})
@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
"""
Prepares a prescription for the specified medication including dosage, route, frequency, and duration.
"""
print(f"Executing prescribe_medication: {medication_name} {dosage}...")
return json.dumps({
"status": "success",
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
"details": f"Duration: {duration}. Reason: {reason}"
})
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
"""
Checks for potential drug interactions and allergy risks for the given prescription.
"""
print(f"\n--- Executing REAL check_drug_interactions ---")
print(f"Checking potential prescription: '{potential_prescription}'")
warnings = []
potential_med_lower = potential_prescription.lower().strip()
current_meds_list = current_medications or []
allergies_list = allergies or []
current_med_names_lower = []
for med in current_meds_list:
match = re.match(r"^\s*([a-zA-Z\-]+)", str(med))
if match:
current_med_names_lower.append(match.group(1).lower())
allergies_lower = [str(a).lower().strip() for a in allergies_list if a]
print(f" Against Current Meds (names): {current_med_names_lower}")
print(f" Against Allergies: {allergies_lower}")
print(f" Step 1: Normalizing '{potential_prescription}'...")
potential_rxcui = get_rxcui(potential_prescription)
potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription)
if not potential_rxcui and not potential_label:
warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.")
print(" Step 2: Performing Allergy Check...")
for allergy in allergies_lower:
if allergy == potential_med_lower:
warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.")
elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]:
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.")
elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]:
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.")
elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]:
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.")
if potential_label:
contraindications = potential_label.get("contraindications")
warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings")
if contraindications:
allergy_mentions_ci = search_text_list(contraindications, allergies_lower)
if allergy_mentions_ci:
warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}")
if warnings_section:
allergy_mentions_warn = search_text_list(warnings_section, allergies_lower)
if allergy_mentions_warn:
warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}")
print(" Step 3: Performing Drug-Drug Interaction Check...")
if potential_rxcui or potential_label:
for current_med_name in current_med_names_lower:
if not current_med_name or current_med_name == potential_med_lower:
continue
print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'...")
current_rxcui = get_rxcui(current_med_name)
current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name)
search_terms_for_current = [current_med_name]
if current_rxcui:
search_terms_for_current.append(current_rxcui)
search_terms_for_potential = [potential_med_lower]
if potential_rxcui:
search_terms_for_potential.append(potential_rxcui)
interaction_found_flag = False
if potential_label and potential_label.get("drug_interactions"):
interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current)
if interaction_mentions:
warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}")
interaction_found_flag = True
if current_label and current_label.get("drug_interactions") and not interaction_found_flag:
interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential)
if interaction_mentions:
warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}")
else:
warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.")
final_warnings = list(set(warnings))
status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear"
if not final_warnings:
status = "clear"
message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."
print(f"--- Interaction Check Complete for '{potential_prescription}' ---")
return json.dumps({
"status": status,
"message": message,
"warnings": final_warnings
})
@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
"""
Flags a clinical risk with the provided description and urgency.
"""
print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}")
st.error(f"🚨 **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="🚨")
return json.dumps({
"status": "flagged",
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
})
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results")
# --- LangGraph Setup ---
class AgentState(TypedDict):
messages: Annotated[list[Any], operator.add]
patient_data: Optional[dict]
tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
tool_executor = ToolExecutor(tools)
model = ChatGroq(temperature=ClinicalAppSettings.TEMPERATURE, model=ClinicalAppSettings.MODEL_NAME)
model_with_tools = model.bind_tools(tools)
# --- Graph Nodes (agent_node, tool_node) ---
def agent_node(state: AgentState):
print("\n---AGENT NODE---")
current_messages = state['messages']
if not current_messages or not isinstance(current_messages[0], SystemMessage):
print("Prepending System Prompt.")
current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages
print(f"Invoking LLM with {len(current_messages)} messages.")
try:
response = model_with_tools.invoke(current_messages)
print(f"Agent Raw Response Type: {type(response)}")
if hasattr(response, 'tool_calls') and response.tool_calls:
print(f"Agent Response Tool Calls: {response.tool_calls}")
else:
print("Agent Response: No tool calls.")
except Exception as e:
print(f"ERROR in agent_node: {e}")
traceback.print_exc()
error_message = AIMessage(content=f"Error: {e}")
return {"messages": [error_message]}
return {"messages": [response]}
def tool_node(state: AgentState):
print("\n---TOOL NODE---")
tool_messages = []
last_message = state['messages'][-1]
if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None):
print("Warning: Tool node called unexpectedly.")
return {"messages": []}
tool_calls = last_message.tool_calls
print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}")
prescriptions_requested = {}
interaction_checks_requested = {}
for call in tool_calls:
tool_name = call.get('name')
tool_args = call.get('args', {})
if tool_name == 'prescribe_medication':
med_name = tool_args.get('medication_name', '').lower()
if med_name:
prescriptions_requested[med_name] = call
elif tool_name == 'check_drug_interactions':
potential_med = tool_args.get('potential_prescription', '').lower()
if potential_med:
interaction_checks_requested[potential_med] = call
valid_tool_calls_for_execution = []
blocked_ids = set()
for med_name, prescribe_call in prescriptions_requested.items():
if med_name not in interaction_checks_requested:
st.error(f"**Safety Violation:** AI tried to prescribe '{med_name}' without check.")
error_msg = ToolMessage(content=json.dumps({
"status": "error",
"message": f"Interaction check needed for '{med_name}'."
}), tool_call_id=prescribe_call['id'], name=prescribe_call['name'])
tool_messages.append(error_msg)
blocked_ids.add(prescribe_call['id'])
valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids]
patient_data = state.get("patient_data", {})
patient_meds_full = patient_data.get("medications", {}).get("current", [])
patient_allergies = patient_data.get("allergies", [])
for call in valid_tool_calls_for_execution:
if call['name'] == 'check_drug_interactions':
if 'args' not in call:
call['args'] = {}
call['args']['current_medications'] = patient_meds_full
call['args']['allergies'] = patient_allergies
print(f"Augmented interaction check args for call ID {call['id']}")
if valid_tool_calls_for_execution:
print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}")
try:
responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True)
for call, resp in zip(valid_tool_calls_for_execution, responses):
tool_call_id = call['id']
tool_name = call['name']
if isinstance(resp, Exception):
error_type = type(resp).__name__
error_str = str(resp)
print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}")
traceback.print_exc()
st.error(f"Error: {error_type}")
error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"})
tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name))
else:
print(f"Tool '{tool_name}' executed.")
content_str = str(resp)
tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name))
except Exception as e:
print(f"CRITICAL TOOL NODE ERROR: {e}")
traceback.print_exc()
st.error(f"Critical error: {e}")
error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"})
processed_ids = {msg.tool_call_id for msg in tool_messages}
[tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name']))
for call in valid_tool_calls_for_execution if call['id'] not in processed_ids]
print(f"Returning {len(tool_messages)} tool messages.")
return {"messages": tool_messages}
# --- Graph Edges (Routing Logic) ---
def should_continue(state: AgentState) -> str:
print("\n---ROUTING DECISION---")
last_message = state['messages'][-1] if state['messages'] else None
if not isinstance(last_message, AIMessage):
return "end_conversation_turn"
if "Sorry, an internal error occurred" in last_message.content:
return "end_conversation_turn"
if getattr(last_message, 'tool_calls', None):
return "continue_tools"
else:
return "end_conversation_turn"
# --- Graph Definition & Compilation ---
workflow = StateGraph(AgentState)
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
workflow.set_entry_point("agent")
workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
workflow.add_edge("tools", "agent")
app = workflow.compile()
print("LangGraph compiled successfully.")
# --- Streamlit UI ---
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME}")
if "messages" not in st.session_state:
st.session_state.messages = []
if "patient_data" not in st.session_state:
st.session_state.patient_data = None
if "graph_app" not in st.session_state:
st.session_state.graph_app = app
# --- Patient Data Input Sidebar ---
with st.sidebar:
st.header("πŸ“„ Patient Intake Form")
# Input fields... (Using shorter versions for brevity, assume full fields are here)
st.subheader("Demographics")
age = st.number_input("Age", 0, 120, 55)
sex = st.selectbox("Sex", ["Male", "Female", "Other"])
st.subheader("HPI")
chief_complaint = st.text_input("Chief Complaint", "Chest pain")
hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100)
symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness"], default=["Nausea", "Diaphoresis"])
st.subheader("History")
pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI")
psh = st.text_area("PSH", "Appendectomy")
st.subheader("Meds & Allergies")
current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID")
allergies_str = st.text_area("Allergies", "Penicillin (rash)")
st.subheader("Social/Family")
social_history = st.text_area("SH", "Smoker")
family_history = st.text_area("FHx", "Father MI")
st.subheader("Vitals & Exam")
col1, col2 = st.columns(2)
with col1:
temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f")
hr_bpm = st.number_input("HR", 30, 250, 95)
rr_rpm = st.number_input("RR", 5, 50, 18)
with col2:
bp_mmhg = st.text_input("BP", "155/90")
spo2_percent = st.number_input("SpO2", 70, 100, 96)
pain_scale = st.slider("Pain", 0, 10, 8)
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50)
if st.button("Start/Update Consultation"):
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
current_med_names_only = []
for med in current_meds_list:
match = re.match(r"^\s*([a-zA-Z\-]+)", med)
if match:
current_med_names_only.append(match.group(1).lower())
allergies_list = []
for a in allergies_str.split(','):
cleaned_allergy = a.strip()
if cleaned_allergy:
match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy)
name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower()
allergies_list.append(name_part)
st.session_state.patient_data = {
"demographics": {"age": age, "sex": sex},
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
"pmh": {"conditions": pmh},
"psh": {"procedures": psh},
"medications": {"current": current_meds_list, "names_only": current_med_names_only},
"allergies": allergies_list,
"social_history": {"details": social_history},
"family_history": {"details": family_history},
"vitals": {
"temp_c": temp_c,
"hr_bpm": hr_bpm,
"bp_mmhg": bp_mmhg,
"rr_rpm": rr_rpm,
"spo2_percent": spo2_percent,
"pain_scale": pain_scale
},
"exam_findings": {"notes": exam_notes}
}
red_flags = check_red_flags(st.session_state.patient_data)
st.sidebar.markdown("---")
if red_flags:
st.sidebar.warning("**Initial Red Flags:**")
[st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
else:
st.sidebar.success("No immediate red flags.")
initial_prompt = "Initiate consultation. Review patient data and begin analysis."
st.session_state.messages = [HumanMessage(content=initial_prompt)]
st.success("Patient data loaded/updated.")
# --- Main Chat Interface Area ---
st.header("πŸ’¬ Clinical Consultation")
# Display loop - SyntaxError Fixed
for msg in st.session_state.messages:
if isinstance(msg, HumanMessage):
with st.chat_message("user"):
st.markdown(msg.content) # No key
elif isinstance(msg, AIMessage):
with st.chat_message("assistant"):
ai_content = msg.content
structured_output = None
try:
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
if json_match:
json_str = json_match.group(1)
prefix = ai_content[:json_match.start()].strip()
suffix = ai_content[json_match.end():].strip()
if prefix:
st.markdown(prefix)
structured_output = json.loads(json_str)
if suffix:
st.markdown(suffix)
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"):
structured_output = json.loads(ai_content)
ai_content = ""
else:
st.markdown(ai_content)
except Exception as e:
st.markdown(ai_content)
print(f"Error parsing/displaying AI JSON: {e}")
if structured_output and isinstance(structured_output, dict):
st.divider()
st.subheader("πŸ“Š AI Analysis & Recommendations")
cols = st.columns(2)
with cols[0]:
st.markdown("**Assessment:**")
st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
st.markdown("**Differential Diagnosis:**")
ddx = structured_output.get('differential_diagnosis', [])
if ddx:
[st.expander(f"{'πŸ₯‡πŸ₯ˆπŸ₯‰'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
else:
st.info("No DDx provided.")
st.markdown("**Risk Assessment:**")
risk = structured_output.get('risk_assessment', {})
flags = risk.get('identified_red_flags', [])
concerns = risk.get("immediate_concerns", [])
comps = risk.get("potential_complications", [])
if flags:
st.warning(f"**Flags:** {', '.join(flags)}")
if concerns:
st.warning(f"**Concerns:** {', '.join(concerns)}")
if comps:
st.info(f"**Potential Complications:** {', '.join(comps)}")
if not flags and not concerns:
st.success("No major risks highlighted.")
with cols[1]:
st.markdown("**Recommended Plan:**")
plan = structured_output.get('recommended_plan', {})
for section in ["investigations","therapeutics","consultations","patient_education"]:
st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
items = plan.get(section)
if items and isinstance(items, list):
[st.markdown(f"- {item}") for item in items]
elif items:
st.markdown(f"- {items}")
else:
st.markdown("_None_")
st.markdown("")
st.markdown("**Rationale & Guideline Check:**")
st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
interaction_summary = structured_output.get("interaction_check_summary", "")
if interaction_summary:
st.markdown("**Interaction Check Summary:**")
st.markdown(f"> {interaction_summary}")
st.divider()
if getattr(msg, 'tool_calls', None):
with st.expander("πŸ› οΈ AI requested actions", expanded=False):
if msg.tool_calls:
for tc in msg.tool_calls:
try:
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
except Exception as display_e:
st.error(f"Could not display tool call arguments properly: {display_e}", icon="⚠️")
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
else:
st.caption("_No actions requested in this turn._")
elif isinstance(msg, ToolMessage):
tool_name_display = getattr(msg, 'name', 'tool_execution')
with st.chat_message(tool_name_display, avatar="πŸ› οΈ"):
try:
tool_data = json.loads(msg.content)
status = tool_data.get("status", "info")
message = tool_data.get("message", msg.content)
details = tool_data.get("details")
warnings = tool_data.get("warnings")
if status == "success" or status == "clear" or status == "flagged":
st.success(f"{message}", icon="βœ…" if status != "flagged" else "🚨")
elif status == "warning":
st.warning(f"{message}", icon="⚠️")
if warnings and isinstance(warnings, list):
st.caption("Details:")
[st.caption(f"- {warn}") for warn in warnings]
else:
st.error(f"{message}", icon="❌")
if details:
st.caption(f"Details: {details}")
except json.JSONDecodeError:
st.info(f"{msg.content}")
except Exception as e:
st.error(f"Error displaying tool message: {e}", icon="❌")
st.caption(f"Raw content: {msg.content}")
# --- Chat Input Logic ---
if prompt := st.chat_input("Your message or follow-up query..."):
if not st.session_state.patient_data:
st.warning("Please load patient data first.")
st.stop()
user_message = HumanMessage(content=prompt)
st.session_state.messages.append(user_message)
with st.chat_message("user"):
st.markdown(prompt)
current_state = AgentState(messages=st.session_state.messages, patient_data=st.session_state.patient_data)
with st.spinner("SynapseAI is thinking..."):
try:
final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
st.session_state.messages = final_state['messages']
except Exception as e:
print(f"CRITICAL ERROR: {e}")
traceback.print_exc()
st.error(f"Error: {e}")
st.rerun()
# Disclaimer
st.markdown("---")
st.warning("**Disclaimer:** SynapseAI is for demonstration...")
if __name__ == "__main__":
main()