|
|
|
import streamlit as st |
|
import requests |
|
import json |
|
import re |
|
import os |
|
import operator |
|
import traceback |
|
from functools import lru_cache |
|
from dotenv import load_dotenv |
|
|
|
from langchain_groq import ChatGroq |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage |
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field |
|
from langchain_core.tools import tool |
|
from langgraph.prebuilt import ToolExecutor |
|
from langgraph.graph import StateGraph, END |
|
|
|
from typing import Optional, List, Dict, Any, TypedDict, Annotated |
|
|
|
|
|
load_dotenv() |
|
UMLS_API_KEY = os.environ.get("UMLS_API_KEY") |
|
GROQ_API_KEY = os.environ.get("GROQ_API_KEY") |
|
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY") |
|
missing_keys = [] |
|
if not UMLS_API_KEY: |
|
missing_keys.append("UMLS_API_KEY") |
|
if not GROQ_API_KEY: |
|
missing_keys.append("GROQ_API_KEY") |
|
if not TAVILY_API_KEY: |
|
missing_keys.append("TAVILY_API_KEY") |
|
if missing_keys: |
|
st.error(f"Missing API Key(s): {', '.join(missing_keys)}.") |
|
st.stop() |
|
|
|
|
|
class ClinicalAppSettings: |
|
APP_TITLE = "SynapseAI (UMLS/FDA Integrated)" |
|
PAGE_LAYOUT = "wide" |
|
MODEL_NAME = "llama3-70b-8192" |
|
TEMPERATURE = 0.1 |
|
MAX_SEARCH_RESULTS = 3 |
|
|
|
class ClinicalPrompts: |
|
SYSTEM_PROMPT = """ |
|
You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT REMAINS THE SAME - OMITTED FOR BREVITY] |
|
""" |
|
|
|
|
|
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key" |
|
RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST" |
|
OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json" |
|
|
|
@lru_cache(maxsize=256) |
|
def get_rxcui(drug_name: str) -> Optional[str]: |
|
if not drug_name or not isinstance(drug_name, str): |
|
return None |
|
drug_name = drug_name.strip() |
|
if not drug_name: |
|
return None |
|
print(f"RxNorm Lookup for: '{drug_name}'") |
|
try: |
|
params = {"name": drug_name, "search": 1} |
|
response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10) |
|
response.raise_for_status() |
|
data = response.json() |
|
if data and "idGroup" in data and "rxnormId" in data["idGroup"]: |
|
rxcui = data["idGroup"]["rxnormId"][0] |
|
print(f" Found RxCUI: {rxcui} for '{drug_name}'") |
|
return rxcui |
|
else: |
|
params = {"name": drug_name} |
|
response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10) |
|
response.raise_for_status() |
|
data = response.json() |
|
if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]: |
|
for group in data["drugGroup"]["conceptGroup"]: |
|
if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]: |
|
if "conceptProperties" in group and group["conceptProperties"]: |
|
rxcui = group["conceptProperties"][0].get("rxcui") |
|
if rxcui: |
|
print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'") |
|
return rxcui |
|
print(f" RxCUI not found for '{drug_name}'.") |
|
return None |
|
except requests.exceptions.RequestException as e: |
|
print(f" Error fetching RxCUI for '{drug_name}': {e}") |
|
return None |
|
except json.JSONDecodeError as e: |
|
print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}") |
|
return None |
|
except Exception as e: |
|
print(f" Unexpected error in get_rxcui for '{drug_name}': {e}") |
|
return None |
|
|
|
@lru_cache(maxsize=128) |
|
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]: |
|
if not rxcui and not drug_name: |
|
return None |
|
print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}") |
|
search_terms = [] |
|
if rxcui: |
|
search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"') |
|
if drug_name: |
|
search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")') |
|
search_query = " OR ".join(search_terms) |
|
params = {"search": search_query, "limit": 1} |
|
try: |
|
response = requests.get(OPENFDA_API_BASE, params=params, timeout=15) |
|
response.raise_for_status() |
|
data = response.json() |
|
if data and "results" in data and data["results"]: |
|
print(f" Found OpenFDA label for query: {search_query}") |
|
return data["results"][0] |
|
print(f" No OpenFDA label found for query: {search_query}") |
|
return None |
|
except requests.exceptions.RequestException as e: |
|
print(f" Error fetching OpenFDA label: {e}") |
|
return None |
|
except json.JSONDecodeError as e: |
|
print(f" Error decoding OpenFDA JSON response: {e}") |
|
return None |
|
except Exception as e: |
|
print(f" Unexpected error in get_openfda_label: {e}") |
|
return None |
|
|
|
def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]: |
|
found_snippets = [] |
|
if not text_list or not search_terms: |
|
return found_snippets |
|
search_terms_lower = [str(term).lower() for term in search_terms if term] |
|
for text_item in text_list: |
|
if not isinstance(text_item, str): |
|
continue |
|
text_item_lower = text_item.lower() |
|
for term in search_terms_lower: |
|
if term in text_item_lower: |
|
start_index = text_item_lower.find(term) |
|
snippet_start = max(0, start_index - 50) |
|
snippet_end = min(len(text_item), start_index + len(term) + 100) |
|
snippet = text_item[snippet_start:snippet_end] |
|
snippet = snippet.replace(term, f"**{term}**", 1) |
|
found_snippets.append(f"...{snippet}...") |
|
break |
|
return found_snippets |
|
|
|
|
|
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]: |
|
if not isinstance(bp_string, str): |
|
return None |
|
match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip()) |
|
if match: |
|
return int(match.group(1)), int(match.group(2)) |
|
return None |
|
|
|
def check_red_flags(patient_data: dict) -> List[str]: |
|
flags = [] |
|
if not patient_data: |
|
return flags |
|
symptoms = patient_data.get("hpi", {}).get("symptoms", []) |
|
vitals = patient_data.get("vitals", {}) |
|
history = patient_data.get("pmh", {}).get("conditions", "") |
|
symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)] |
|
|
|
if "chest pain" in symptoms_lower: |
|
flags.append("Red Flag: Chest Pain reported.") |
|
if "shortness of breath" in symptoms_lower: |
|
flags.append("Red Flag: Shortness of Breath reported.") |
|
if "severe headache" in symptoms_lower: |
|
flags.append("Red Flag: Severe Headache reported.") |
|
if "sudden vision loss" in symptoms_lower: |
|
flags.append("Red Flag: Sudden Vision Loss reported.") |
|
if "weakness on one side" in symptoms_lower: |
|
flags.append("Red Flag: Unilateral Weakness reported (potential stroke).") |
|
if "hemoptysis" in symptoms_lower: |
|
flags.append("Red Flag: Hemoptysis (coughing up blood).") |
|
if "syncope" in symptoms_lower: |
|
flags.append("Red Flag: Syncope (fainting).") |
|
|
|
if vitals: |
|
temp = vitals.get("temp_c") |
|
hr = vitals.get("hr_bpm") |
|
rr = vitals.get("rr_rpm") |
|
spo2 = vitals.get("spo2_percent") |
|
bp_str = vitals.get("bp_mmhg") |
|
|
|
if temp is not None and temp >= 38.5: |
|
flags.append(f"Red Flag: Fever ({temp}Β°C).") |
|
if hr is not None and hr >= 120: |
|
flags.append(f"Red Flag: Tachycardia ({hr} bpm).") |
|
if hr is not None and hr <= 50: |
|
flags.append(f"Red Flag: Bradycardia ({hr} bpm).") |
|
if rr is not None and rr >= 24: |
|
flags.append(f"Red Flag: Tachypnea ({rr} rpm).") |
|
if spo2 is not None and spo2 <= 92: |
|
flags.append(f"Red Flag: Hypoxia ({spo2}%).") |
|
|
|
if bp_str: |
|
bp = parse_bp(bp_str) |
|
if bp: |
|
if bp[0] >= 180 or bp[1] >= 110: |
|
flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).") |
|
if bp[0] <= 90 or bp[1] <= 60: |
|
flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).") |
|
|
|
if history and isinstance(history, str): |
|
history_lower = history.lower() |
|
if "history of mi" in history_lower and "chest pain" in symptoms_lower: |
|
flags.append("Red Flag: History of MI with current Chest Pain.") |
|
if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower: |
|
flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.") |
|
|
|
return list(set(flags)) |
|
|
|
def format_patient_data_for_prompt(data: dict) -> str: |
|
if not data: |
|
return "No patient data provided." |
|
prompt_str = "" |
|
for key, value in data.items(): |
|
section_title = key.replace('_', ' ').title() |
|
if isinstance(value, dict) and value: |
|
has_content = any(sub_value for sub_value in value.values()) |
|
if has_content: |
|
prompt_str += f"**{section_title}:**\n" |
|
for sub_key, sub_value in value.items(): |
|
if sub_value: |
|
prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n" |
|
elif isinstance(value, list) and value: |
|
prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n" |
|
elif value and not isinstance(value, dict): |
|
prompt_str += f"**{section_title}:** {value}\n" |
|
return prompt_str.strip() |
|
|
|
|
|
class LabOrderInput(BaseModel): |
|
test_name: str = Field(...) |
|
reason: str = Field(...) |
|
priority: str = Field("Routine") |
|
|
|
class PrescriptionInput(BaseModel): |
|
medication_name: str = Field(...) |
|
dosage: str = Field(...) |
|
route: str = Field(...) |
|
frequency: str = Field(...) |
|
duration: str = Field("As directed") |
|
reason: str = Field(...) |
|
|
|
class InteractionCheckInput(BaseModel): |
|
potential_prescription: str = Field(...) |
|
current_medications: Optional[List[str]] = Field(None) |
|
allergies: Optional[List[str]] = Field(None) |
|
|
|
class FlagRiskInput(BaseModel): |
|
risk_description: str = Field(...) |
|
urgency: str = Field("High") |
|
|
|
@tool("order_lab_test", args_schema=LabOrderInput) |
|
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str: |
|
""" |
|
Orders a lab test with the specified test name, reason, and priority. |
|
""" |
|
print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}") |
|
return json.dumps({ |
|
"status": "success", |
|
"message": f"Lab Ordered: {test_name} ({priority})", |
|
"details": f"Reason: {reason}" |
|
}) |
|
|
|
@tool("prescribe_medication", args_schema=PrescriptionInput) |
|
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str: |
|
""" |
|
Prepares a prescription for the specified medication including dosage, route, frequency, and duration. |
|
""" |
|
print(f"Executing prescribe_medication: {medication_name} {dosage}...") |
|
return json.dumps({ |
|
"status": "success", |
|
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", |
|
"details": f"Duration: {duration}. Reason: {reason}" |
|
}) |
|
|
|
@tool("check_drug_interactions", args_schema=InteractionCheckInput) |
|
def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str: |
|
""" |
|
Checks for potential drug interactions and allergy risks for the given prescription. |
|
""" |
|
print(f"\n--- Executing REAL check_drug_interactions ---") |
|
print(f"Checking potential prescription: '{potential_prescription}'") |
|
warnings = [] |
|
potential_med_lower = potential_prescription.lower().strip() |
|
current_meds_list = current_medications or [] |
|
allergies_list = allergies or [] |
|
current_med_names_lower = [] |
|
for med in current_meds_list: |
|
match = re.match(r"^\s*([a-zA-Z\-]+)", str(med)) |
|
if match: |
|
current_med_names_lower.append(match.group(1).lower()) |
|
allergies_lower = [str(a).lower().strip() for a in allergies_list if a] |
|
print(f" Against Current Meds (names): {current_med_names_lower}") |
|
print(f" Against Allergies: {allergies_lower}") |
|
print(f" Step 1: Normalizing '{potential_prescription}'...") |
|
potential_rxcui = get_rxcui(potential_prescription) |
|
potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription) |
|
if not potential_rxcui and not potential_label: |
|
warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.") |
|
print(" Step 2: Performing Allergy Check...") |
|
for allergy in allergies_lower: |
|
if allergy == potential_med_lower: |
|
warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.") |
|
elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]: |
|
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.") |
|
elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]: |
|
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.") |
|
elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]: |
|
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.") |
|
if potential_label: |
|
contraindications = potential_label.get("contraindications") |
|
warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings") |
|
if contraindications: |
|
allergy_mentions_ci = search_text_list(contraindications, allergies_lower) |
|
if allergy_mentions_ci: |
|
warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}") |
|
if warnings_section: |
|
allergy_mentions_warn = search_text_list(warnings_section, allergies_lower) |
|
if allergy_mentions_warn: |
|
warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}") |
|
print(" Step 3: Performing Drug-Drug Interaction Check...") |
|
if potential_rxcui or potential_label: |
|
for current_med_name in current_med_names_lower: |
|
if not current_med_name or current_med_name == potential_med_lower: |
|
continue |
|
print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'...") |
|
current_rxcui = get_rxcui(current_med_name) |
|
current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name) |
|
search_terms_for_current = [current_med_name] |
|
if current_rxcui: |
|
search_terms_for_current.append(current_rxcui) |
|
search_terms_for_potential = [potential_med_lower] |
|
if potential_rxcui: |
|
search_terms_for_potential.append(potential_rxcui) |
|
interaction_found_flag = False |
|
if potential_label and potential_label.get("drug_interactions"): |
|
interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current) |
|
if interaction_mentions: |
|
warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}") |
|
interaction_found_flag = True |
|
if current_label and current_label.get("drug_interactions") and not interaction_found_flag: |
|
interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential) |
|
if interaction_mentions: |
|
warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}") |
|
else: |
|
warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.") |
|
final_warnings = list(set(warnings)) |
|
status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear" |
|
if not final_warnings: |
|
status = "clear" |
|
message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup." |
|
print(f"--- Interaction Check Complete for '{potential_prescription}' ---") |
|
return json.dumps({ |
|
"status": status, |
|
"message": message, |
|
"warnings": final_warnings |
|
}) |
|
|
|
@tool("flag_risk", args_schema=FlagRiskInput) |
|
def flag_risk(risk_description: str, urgency: str) -> str: |
|
""" |
|
Flags a clinical risk with the provided description and urgency. |
|
""" |
|
print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}") |
|
st.error(f"π¨ **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="π¨") |
|
return json.dumps({ |
|
"status": "flagged", |
|
"message": f"Risk '{risk_description}' flagged with {urgency} urgency." |
|
}) |
|
|
|
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results") |
|
|
|
|
|
class AgentState(TypedDict): |
|
messages: Annotated[list[Any], operator.add] |
|
patient_data: Optional[dict] |
|
|
|
tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool] |
|
tool_executor = ToolExecutor(tools) |
|
model = ChatGroq(temperature=ClinicalAppSettings.TEMPERATURE, model=ClinicalAppSettings.MODEL_NAME) |
|
model_with_tools = model.bind_tools(tools) |
|
|
|
|
|
def agent_node(state: AgentState): |
|
print("\n---AGENT NODE---") |
|
current_messages = state['messages'] |
|
if not current_messages or not isinstance(current_messages[0], SystemMessage): |
|
print("Prepending System Prompt.") |
|
current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages |
|
print(f"Invoking LLM with {len(current_messages)} messages.") |
|
try: |
|
response = model_with_tools.invoke(current_messages) |
|
print(f"Agent Raw Response Type: {type(response)}") |
|
if hasattr(response, 'tool_calls') and response.tool_calls: |
|
print(f"Agent Response Tool Calls: {response.tool_calls}") |
|
else: |
|
print("Agent Response: No tool calls.") |
|
except Exception as e: |
|
print(f"ERROR in agent_node: {e}") |
|
traceback.print_exc() |
|
error_message = AIMessage(content=f"Error: {e}") |
|
return {"messages": [error_message]} |
|
return {"messages": [response]} |
|
|
|
def tool_node(state: AgentState): |
|
print("\n---TOOL NODE---") |
|
tool_messages = [] |
|
last_message = state['messages'][-1] |
|
if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None): |
|
print("Warning: Tool node called unexpectedly.") |
|
return {"messages": []} |
|
tool_calls = last_message.tool_calls |
|
print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}") |
|
prescriptions_requested = {} |
|
interaction_checks_requested = {} |
|
for call in tool_calls: |
|
tool_name = call.get('name') |
|
tool_args = call.get('args', {}) |
|
if tool_name == 'prescribe_medication': |
|
med_name = tool_args.get('medication_name', '').lower() |
|
if med_name: |
|
prescriptions_requested[med_name] = call |
|
elif tool_name == 'check_drug_interactions': |
|
potential_med = tool_args.get('potential_prescription', '').lower() |
|
if potential_med: |
|
interaction_checks_requested[potential_med] = call |
|
valid_tool_calls_for_execution = [] |
|
blocked_ids = set() |
|
for med_name, prescribe_call in prescriptions_requested.items(): |
|
if med_name not in interaction_checks_requested: |
|
st.error(f"**Safety Violation:** AI tried to prescribe '{med_name}' without check.") |
|
error_msg = ToolMessage(content=json.dumps({ |
|
"status": "error", |
|
"message": f"Interaction check needed for '{med_name}'." |
|
}), tool_call_id=prescribe_call['id'], name=prescribe_call['name']) |
|
tool_messages.append(error_msg) |
|
blocked_ids.add(prescribe_call['id']) |
|
valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids] |
|
patient_data = state.get("patient_data", {}) |
|
patient_meds_full = patient_data.get("medications", {}).get("current", []) |
|
patient_allergies = patient_data.get("allergies", []) |
|
for call in valid_tool_calls_for_execution: |
|
if call['name'] == 'check_drug_interactions': |
|
if 'args' not in call: |
|
call['args'] = {} |
|
call['args']['current_medications'] = patient_meds_full |
|
call['args']['allergies'] = patient_allergies |
|
print(f"Augmented interaction check args for call ID {call['id']}") |
|
if valid_tool_calls_for_execution: |
|
print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}") |
|
try: |
|
responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True) |
|
for call, resp in zip(valid_tool_calls_for_execution, responses): |
|
tool_call_id = call['id'] |
|
tool_name = call['name'] |
|
if isinstance(resp, Exception): |
|
error_type = type(resp).__name__ |
|
error_str = str(resp) |
|
print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}") |
|
traceback.print_exc() |
|
st.error(f"Error: {error_type}") |
|
error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"}) |
|
tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name)) |
|
else: |
|
print(f"Tool '{tool_name}' executed.") |
|
content_str = str(resp) |
|
tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name)) |
|
except Exception as e: |
|
print(f"CRITICAL TOOL NODE ERROR: {e}") |
|
traceback.print_exc() |
|
st.error(f"Critical error: {e}") |
|
error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"}) |
|
processed_ids = {msg.tool_call_id for msg in tool_messages} |
|
[tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name'])) |
|
for call in valid_tool_calls_for_execution if call['id'] not in processed_ids] |
|
print(f"Returning {len(tool_messages)} tool messages.") |
|
return {"messages": tool_messages} |
|
|
|
|
|
def should_continue(state: AgentState) -> str: |
|
print("\n---ROUTING DECISION---") |
|
last_message = state['messages'][-1] if state['messages'] else None |
|
if not isinstance(last_message, AIMessage): |
|
return "end_conversation_turn" |
|
if "Sorry, an internal error occurred" in last_message.content: |
|
return "end_conversation_turn" |
|
if getattr(last_message, 'tool_calls', None): |
|
return "continue_tools" |
|
else: |
|
return "end_conversation_turn" |
|
|
|
|
|
workflow = StateGraph(AgentState) |
|
workflow.add_node("agent", agent_node) |
|
workflow.add_node("tools", tool_node) |
|
workflow.set_entry_point("agent") |
|
workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END}) |
|
workflow.add_edge("tools", "agent") |
|
app = workflow.compile() |
|
print("LangGraph compiled successfully.") |
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT) |
|
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}") |
|
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME}") |
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
if "patient_data" not in st.session_state: |
|
st.session_state.patient_data = None |
|
if "graph_app" not in st.session_state: |
|
st.session_state.graph_app = app |
|
|
|
|
|
with st.sidebar: |
|
st.header("π Patient Intake Form") |
|
|
|
st.subheader("Demographics") |
|
age = st.number_input("Age", 0, 120, 55) |
|
sex = st.selectbox("Sex", ["Male", "Female", "Other"]) |
|
st.subheader("HPI") |
|
chief_complaint = st.text_input("Chief Complaint", "Chest pain") |
|
hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100) |
|
symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness"], default=["Nausea", "Diaphoresis"]) |
|
st.subheader("History") |
|
pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI") |
|
psh = st.text_area("PSH", "Appendectomy") |
|
st.subheader("Meds & Allergies") |
|
current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID") |
|
allergies_str = st.text_area("Allergies", "Penicillin (rash)") |
|
st.subheader("Social/Family") |
|
social_history = st.text_area("SH", "Smoker") |
|
family_history = st.text_area("FHx", "Father MI") |
|
st.subheader("Vitals & Exam") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f") |
|
hr_bpm = st.number_input("HR", 30, 250, 95) |
|
rr_rpm = st.number_input("RR", 5, 50, 18) |
|
with col2: |
|
bp_mmhg = st.text_input("BP", "155/90") |
|
spo2_percent = st.number_input("SpO2", 70, 100, 96) |
|
pain_scale = st.slider("Pain", 0, 10, 8) |
|
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50) |
|
|
|
if st.button("Start/Update Consultation"): |
|
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()] |
|
current_med_names_only = [] |
|
for med in current_meds_list: |
|
match = re.match(r"^\s*([a-zA-Z\-]+)", med) |
|
if match: |
|
current_med_names_only.append(match.group(1).lower()) |
|
allergies_list = [] |
|
for a in allergies_str.split(','): |
|
cleaned_allergy = a.strip() |
|
if cleaned_allergy: |
|
match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy) |
|
name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower() |
|
allergies_list.append(name_part) |
|
st.session_state.patient_data = { |
|
"demographics": {"age": age, "sex": sex}, |
|
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, |
|
"pmh": {"conditions": pmh}, |
|
"psh": {"procedures": psh}, |
|
"medications": {"current": current_meds_list, "names_only": current_med_names_only}, |
|
"allergies": allergies_list, |
|
"social_history": {"details": social_history}, |
|
"family_history": {"details": family_history}, |
|
"vitals": { |
|
"temp_c": temp_c, |
|
"hr_bpm": hr_bpm, |
|
"bp_mmhg": bp_mmhg, |
|
"rr_rpm": rr_rpm, |
|
"spo2_percent": spo2_percent, |
|
"pain_scale": pain_scale |
|
}, |
|
"exam_findings": {"notes": exam_notes} |
|
} |
|
red_flags = check_red_flags(st.session_state.patient_data) |
|
st.sidebar.markdown("---") |
|
if red_flags: |
|
st.sidebar.warning("**Initial Red Flags:**") |
|
[st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags] |
|
else: |
|
st.sidebar.success("No immediate red flags.") |
|
initial_prompt = "Initiate consultation. Review patient data and begin analysis." |
|
st.session_state.messages = [HumanMessage(content=initial_prompt)] |
|
st.success("Patient data loaded/updated.") |
|
|
|
|
|
st.header("π¬ Clinical Consultation") |
|
|
|
for msg in st.session_state.messages: |
|
if isinstance(msg, HumanMessage): |
|
with st.chat_message("user"): |
|
st.markdown(msg.content) |
|
elif isinstance(msg, AIMessage): |
|
with st.chat_message("assistant"): |
|
ai_content = msg.content |
|
structured_output = None |
|
try: |
|
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE) |
|
if json_match: |
|
json_str = json_match.group(1) |
|
prefix = ai_content[:json_match.start()].strip() |
|
suffix = ai_content[json_match.end():].strip() |
|
if prefix: |
|
st.markdown(prefix) |
|
structured_output = json.loads(json_str) |
|
if suffix: |
|
st.markdown(suffix) |
|
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): |
|
structured_output = json.loads(ai_content) |
|
ai_content = "" |
|
else: |
|
st.markdown(ai_content) |
|
except Exception as e: |
|
st.markdown(ai_content) |
|
print(f"Error parsing/displaying AI JSON: {e}") |
|
if structured_output and isinstance(structured_output, dict): |
|
st.divider() |
|
st.subheader("π AI Analysis & Recommendations") |
|
cols = st.columns(2) |
|
with cols[0]: |
|
st.markdown("**Assessment:**") |
|
st.markdown(f"> {structured_output.get('assessment', 'N/A')}") |
|
st.markdown("**Differential Diagnosis:**") |
|
ddx = structured_output.get('differential_diagnosis', []) |
|
if ddx: |
|
[st.expander(f"{'π₯π₯π₯'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx] |
|
else: |
|
st.info("No DDx provided.") |
|
st.markdown("**Risk Assessment:**") |
|
risk = structured_output.get('risk_assessment', {}) |
|
flags = risk.get('identified_red_flags', []) |
|
concerns = risk.get("immediate_concerns", []) |
|
comps = risk.get("potential_complications", []) |
|
if flags: |
|
st.warning(f"**Flags:** {', '.join(flags)}") |
|
if concerns: |
|
st.warning(f"**Concerns:** {', '.join(concerns)}") |
|
if comps: |
|
st.info(f"**Potential Complications:** {', '.join(comps)}") |
|
if not flags and not concerns: |
|
st.success("No major risks highlighted.") |
|
with cols[1]: |
|
st.markdown("**Recommended Plan:**") |
|
plan = structured_output.get('recommended_plan', {}) |
|
for section in ["investigations","therapeutics","consultations","patient_education"]: |
|
st.markdown(f"_{section.replace('_',' ').capitalize()}:_") |
|
items = plan.get(section) |
|
if items and isinstance(items, list): |
|
[st.markdown(f"- {item}") for item in items] |
|
elif items: |
|
st.markdown(f"- {items}") |
|
else: |
|
st.markdown("_None_") |
|
st.markdown("") |
|
st.markdown("**Rationale & Guideline Check:**") |
|
st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}") |
|
interaction_summary = structured_output.get("interaction_check_summary", "") |
|
if interaction_summary: |
|
st.markdown("**Interaction Check Summary:**") |
|
st.markdown(f"> {interaction_summary}") |
|
st.divider() |
|
|
|
if getattr(msg, 'tool_calls', None): |
|
with st.expander("π οΈ AI requested actions", expanded=False): |
|
if msg.tool_calls: |
|
for tc in msg.tool_calls: |
|
try: |
|
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json") |
|
except Exception as display_e: |
|
st.error(f"Could not display tool call arguments properly: {display_e}", icon="β οΈ") |
|
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}") |
|
else: |
|
st.caption("_No actions requested in this turn._") |
|
elif isinstance(msg, ToolMessage): |
|
tool_name_display = getattr(msg, 'name', 'tool_execution') |
|
with st.chat_message(tool_name_display, avatar="π οΈ"): |
|
try: |
|
tool_data = json.loads(msg.content) |
|
status = tool_data.get("status", "info") |
|
message = tool_data.get("message", msg.content) |
|
details = tool_data.get("details") |
|
warnings = tool_data.get("warnings") |
|
if status == "success" or status == "clear" or status == "flagged": |
|
st.success(f"{message}", icon="β
" if status != "flagged" else "π¨") |
|
elif status == "warning": |
|
st.warning(f"{message}", icon="β οΈ") |
|
if warnings and isinstance(warnings, list): |
|
st.caption("Details:") |
|
[st.caption(f"- {warn}") for warn in warnings] |
|
else: |
|
st.error(f"{message}", icon="β") |
|
if details: |
|
st.caption(f"Details: {details}") |
|
except json.JSONDecodeError: |
|
st.info(f"{msg.content}") |
|
except Exception as e: |
|
st.error(f"Error displaying tool message: {e}", icon="β") |
|
st.caption(f"Raw content: {msg.content}") |
|
|
|
|
|
if prompt := st.chat_input("Your message or follow-up query..."): |
|
if not st.session_state.patient_data: |
|
st.warning("Please load patient data first.") |
|
st.stop() |
|
user_message = HumanMessage(content=prompt) |
|
st.session_state.messages.append(user_message) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
current_state = AgentState(messages=st.session_state.messages, patient_data=st.session_state.patient_data) |
|
with st.spinner("SynapseAI is thinking..."): |
|
try: |
|
final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15}) |
|
st.session_state.messages = final_state['messages'] |
|
except Exception as e: |
|
print(f"CRITICAL ERROR: {e}") |
|
traceback.print_exc() |
|
st.error(f"Error: {e}") |
|
st.rerun() |
|
|
|
|
|
st.markdown("---") |
|
st.warning("**Disclaimer:** SynapseAI is for demonstration...") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|