File size: 37,568 Bytes
71db5de
788074d
b34efbf
 
 
 
 
 
 
 
 
788074d
 
4258926
99a7bc0
896de2d
63b0a52
4258926
 
 
 
b34efbf
 
71db5de
b34efbf
 
 
 
99a7bc0
 
 
 
 
 
 
 
 
9988477
31ea2bf
99a7bc0
 
 
 
 
 
 
 
 
71db5de
896de2d
 
71db5de
99a7bc0
 
 
 
71db5de
b34efbf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34efbf
 
 
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71db5de
b34efbf
99a7bc0
 
 
 
 
 
 
 
 
 
b34efbf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34efbf
99a7bc0
 
 
 
b34efbf
99a7bc0
 
 
b34efbf
 
99a7bc0
 
 
 
 
6b2d9f7
99a7bc0
b34efbf
 
99a7bc0
71db5de
99a7bc0
 
 
 
 
 
6b2d9f7
896de2d
6b2d9f7
99a7bc0
 
6b2d9f7
 
 
 
99a7bc0
6b2d9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
99a7bc0
6b2d9f7
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b2d9f7
 
 
 
 
99a7bc0
 
 
6b2d9f7
31ea2bf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
896de2d
31ea2bf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
b34efbf
 
5f93c27
 
 
99a7bc0
 
 
 
 
 
 
b34efbf
 
5f93c27
 
 
99a7bc0
 
 
 
 
 
 
896de2d
31ea2bf
5f93c27
 
 
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988477
b34efbf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896de2d
 
5f93c27
 
 
99a7bc0
 
 
 
 
 
 
9988477
4258926
 
99a7bc0
 
 
 
9988477
4258926
9988477
31ea2bf
4258926
71db5de
4258926
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
99a7bc0
4258926
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
71db5de
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
9988477
4258926
99a7bc0
 
 
 
 
 
 
 
 
 
31ea2bf
9988477
99a7bc0
 
 
 
 
 
 
 
4258926
31ea2bf
4258926
 
 
b34efbf
99a7bc0
 
 
 
 
 
4258926
9988477
4258926
 
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
99a7bc0
 
 
 
 
31ea2bf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71db5de
99a7bc0
 
9988477
 
4258926
99a7bc0
9988477
4258926
99a7bc0
 
4258926
6b2d9f7
99a7bc0
 
 
31ea2bf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea2bf
99a7bc0
 
71db5de
 
 
 
99a7bc0
6b2d9f7
99a7bc0
 
4258926
b34efbf
99a7bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258926
9988477
4258926
99a7bc0
 
 
 
 
 
 
b34efbf
31ea2bf
 
b34efbf
71db5de
99a7bc0
 
 
 
71db5de
31ea2bf
9988477
99a7bc0
 
b564942
 
99a7bc0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
# -*- coding: utf-8 -*-
import streamlit as st
import requests
import json
import re
import os
import operator
import traceback
from functools import lru_cache
from dotenv import load_dotenv

from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
# from langchain_core.prompts import ChatPromptTemplate # Not explicitly used
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END

from typing import Optional, List, Dict, Any, TypedDict, Annotated

# --- Environment Variable Loading & Validation ---
load_dotenv()
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
missing_keys = []
if not UMLS_API_KEY:
    missing_keys.append("UMLS_API_KEY")
if not GROQ_API_KEY:
    missing_keys.append("GROQ_API_KEY")
if not TAVILY_API_KEY:
    missing_keys.append("TAVILY_API_KEY")
if missing_keys:
    st.error(f"Missing API Key(s): {', '.join(missing_keys)}.")
    st.stop()

# --- Configuration & Constants ---
class ClinicalAppSettings:
    APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
    PAGE_LAYOUT = "wide"
    MODEL_NAME = "llama3-70b-8192"
    TEMPERATURE = 0.1
    MAX_SEARCH_RESULTS = 3

class ClinicalPrompts:
    SYSTEM_PROMPT = """
    You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT REMAINS THE SAME - OMITTED FOR BREVITY]
    """

# --- API Helper Functions (get_rxcui, get_openfda_label, search_text_list) ---
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"

@lru_cache(maxsize=256)
def get_rxcui(drug_name: str) -> Optional[str]:
    if not drug_name or not isinstance(drug_name, str):
        return None
    drug_name = drug_name.strip()
    if not drug_name:
        return None
    print(f"RxNorm Lookup for: '{drug_name}'")
    try:
        params = {"name": drug_name, "search": 1}
        response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
        response.raise_for_status()
        data = response.json()
        if data and "idGroup" in data and "rxnormId" in data["idGroup"]:
            rxcui = data["idGroup"]["rxnormId"][0]
            print(f"  Found RxCUI: {rxcui} for '{drug_name}'")
            return rxcui
        else:
            params = {"name": drug_name}
            response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10)
            response.raise_for_status()
            data = response.json()
            if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
                for group in data["drugGroup"]["conceptGroup"]:
                    if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
                        if "conceptProperties" in group and group["conceptProperties"]:
                            rxcui = group["conceptProperties"][0].get("rxcui")
                        if rxcui:
                            print(f"  Found RxCUI (via /drugs): {rxcui} for '{drug_name}'")
                            return rxcui
        print(f"  RxCUI not found for '{drug_name}'.")
        return None
    except requests.exceptions.RequestException as e:
        print(f"  Error fetching RxCUI for '{drug_name}': {e}")
        return None
    except json.JSONDecodeError as e:
        print(f"  Error decoding RxNorm JSON response for '{drug_name}': {e}")
        return None
    except Exception as e:
        print(f"  Unexpected error in get_rxcui for '{drug_name}': {e}")
        return None

@lru_cache(maxsize=128)
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
    if not rxcui and not drug_name:
        return None
    print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}")
    search_terms = []
    if rxcui:
        search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
    if drug_name:
        search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
    search_query = " OR ".join(search_terms)
    params = {"search": search_query, "limit": 1}
    try:
        response = requests.get(OPENFDA_API_BASE, params=params, timeout=15)
        response.raise_for_status()
        data = response.json()
        if data and "results" in data and data["results"]:
            print(f"  Found OpenFDA label for query: {search_query}")
            return data["results"][0]
        print(f"  No OpenFDA label found for query: {search_query}")
        return None
    except requests.exceptions.RequestException as e:
        print(f"  Error fetching OpenFDA label: {e}")
        return None
    except json.JSONDecodeError as e:
        print(f"  Error decoding OpenFDA JSON response: {e}")
        return None
    except Exception as e:
        print(f"  Unexpected error in get_openfda_label: {e}")
        return None

def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
    found_snippets = []
    if not text_list or not search_terms:
        return found_snippets
    search_terms_lower = [str(term).lower() for term in search_terms if term]
    for text_item in text_list:
        if not isinstance(text_item, str):
            continue
        text_item_lower = text_item.lower()
        for term in search_terms_lower:
            if term in text_item_lower:
                start_index = text_item_lower.find(term)
                snippet_start = max(0, start_index - 50)
                snippet_end = min(len(text_item), start_index + len(term) + 100)
                snippet = text_item[snippet_start:snippet_end]
                snippet = snippet.replace(term, f"**{term}**", 1)
                found_snippets.append(f"...{snippet}...")
                break
    return found_snippets

# --- Other Helper Functions (parse_bp, check_red_flags, format_patient_data_for_prompt) ---
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
    if not isinstance(bp_string, str):
        return None
    match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip())
    if match:
        return int(match.group(1)), int(match.group(2))
    return None

def check_red_flags(patient_data: dict) -> List[str]:
    flags = []
    if not patient_data:
        return flags
    symptoms = patient_data.get("hpi", {}).get("symptoms", [])
    vitals = patient_data.get("vitals", {})
    history = patient_data.get("pmh", {}).get("conditions", "")
    symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]
    
    if "chest pain" in symptoms_lower:
        flags.append("Red Flag: Chest Pain reported.")
    if "shortness of breath" in symptoms_lower:
        flags.append("Red Flag: Shortness of Breath reported.")
    if "severe headache" in symptoms_lower:
        flags.append("Red Flag: Severe Headache reported.")
    if "sudden vision loss" in symptoms_lower:
        flags.append("Red Flag: Sudden Vision Loss reported.")
    if "weakness on one side" in symptoms_lower:
        flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
    if "hemoptysis" in symptoms_lower:
        flags.append("Red Flag: Hemoptysis (coughing up blood).")
    if "syncope" in symptoms_lower:
        flags.append("Red Flag: Syncope (fainting).")
    
    if vitals:
        temp = vitals.get("temp_c")
        hr = vitals.get("hr_bpm")
        rr = vitals.get("rr_rpm")
        spo2 = vitals.get("spo2_percent")
        bp_str = vitals.get("bp_mmhg")
        
        if temp is not None and temp >= 38.5:
            flags.append(f"Red Flag: Fever ({temp}Β°C).")
        if hr is not None and hr >= 120:
            flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
        if hr is not None and hr <= 50:
            flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
        if rr is not None and rr >= 24:
            flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
        if spo2 is not None and spo2 <= 92:
            flags.append(f"Red Flag: Hypoxia ({spo2}%).")
    
    if bp_str:
        bp = parse_bp(bp_str)
        if bp:
            if bp[0] >= 180 or bp[1] >= 110:
                flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
            if bp[0] <= 90 or bp[1] <= 60:
                flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
    
    if history and isinstance(history, str):
        history_lower = history.lower()
        if "history of mi" in history_lower and "chest pain" in symptoms_lower:
            flags.append("Red Flag: History of MI with current Chest Pain.")
        if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower:
            flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
    
    return list(set(flags))

def format_patient_data_for_prompt(data: dict) -> str:
    if not data:
        return "No patient data provided."
    prompt_str = ""
    for key, value in data.items():
        section_title = key.replace('_', ' ').title()
        if isinstance(value, dict) and value:
            has_content = any(sub_value for sub_value in value.values())
            if has_content:
                prompt_str += f"**{section_title}:**\n"
                for sub_key, sub_value in value.items():
                    if sub_value:
                        prompt_str += f"  - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
        elif isinstance(value, list) and value:
            prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
        elif value and not isinstance(value, dict):
            prompt_str += f"**{section_title}:** {value}\n"
    return prompt_str.strip()

# --- Tool Definitions ---
class LabOrderInput(BaseModel):
    test_name: str = Field(...)
    reason: str = Field(...)
    priority: str = Field("Routine")

class PrescriptionInput(BaseModel):
    medication_name: str = Field(...)
    dosage: str = Field(...)
    route: str = Field(...)
    frequency: str = Field(...)
    duration: str = Field("As directed")
    reason: str = Field(...)

class InteractionCheckInput(BaseModel):
    potential_prescription: str = Field(...)
    current_medications: Optional[List[str]] = Field(None)
    allergies: Optional[List[str]] = Field(None)

class FlagRiskInput(BaseModel):
    risk_description: str = Field(...)
    urgency: str = Field("High")

@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
    """
    Orders a lab test with the specified test name, reason, and priority.
    """
    print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}")
    return json.dumps({
        "status": "success",
        "message": f"Lab Ordered: {test_name} ({priority})",
        "details": f"Reason: {reason}"
    })

@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
    """
    Prepares a prescription for the specified medication including dosage, route, frequency, and duration.
    """
    print(f"Executing prescribe_medication: {medication_name} {dosage}...")
    return json.dumps({
        "status": "success",
        "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
        "details": f"Duration: {duration}. Reason: {reason}"
    })

@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
    """
    Checks for potential drug interactions and allergy risks for the given prescription.
    """
    print(f"\n--- Executing REAL check_drug_interactions ---")
    print(f"Checking potential prescription: '{potential_prescription}'")
    warnings = []
    potential_med_lower = potential_prescription.lower().strip()
    current_meds_list = current_medications or []
    allergies_list = allergies or []
    current_med_names_lower = []
    for med in current_meds_list:
        match = re.match(r"^\s*([a-zA-Z\-]+)", str(med))
        if match:
            current_med_names_lower.append(match.group(1).lower())
    allergies_lower = [str(a).lower().strip() for a in allergies_list if a]
    print(f"  Against Current Meds (names): {current_med_names_lower}")
    print(f"  Against Allergies: {allergies_lower}")
    print(f"  Step 1: Normalizing '{potential_prescription}'...")
    potential_rxcui = get_rxcui(potential_prescription)
    potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription)
    if not potential_rxcui and not potential_label:
        warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.")
    print("  Step 2: Performing Allergy Check...")
    for allergy in allergies_lower:
        if allergy == potential_med_lower:
            warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.")
        elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]:
            warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.")
        elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]:
            warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.")
        elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]:
            warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.")
    if potential_label:
        contraindications = potential_label.get("contraindications")
        warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings")
        if contraindications:
            allergy_mentions_ci = search_text_list(contraindications, allergies_lower)
            if allergy_mentions_ci:
                warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}")
        if warnings_section:
            allergy_mentions_warn = search_text_list(warnings_section, allergies_lower)
            if allergy_mentions_warn:
                warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}")
    print("  Step 3: Performing Drug-Drug Interaction Check...")
    if potential_rxcui or potential_label:
        for current_med_name in current_med_names_lower:
            if not current_med_name or current_med_name == potential_med_lower:
                continue
            print(f"    Checking interaction between '{potential_prescription}' and '{current_med_name}'...")
            current_rxcui = get_rxcui(current_med_name)
            current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name)
            search_terms_for_current = [current_med_name]
            if current_rxcui:
                search_terms_for_current.append(current_rxcui)
            search_terms_for_potential = [potential_med_lower]
            if potential_rxcui:
                search_terms_for_potential.append(potential_rxcui)
            interaction_found_flag = False
            if potential_label and potential_label.get("drug_interactions"):
                interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current)
                if interaction_mentions:
                    warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}")
                    interaction_found_flag = True
            if current_label and current_label.get("drug_interactions") and not interaction_found_flag:
                interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential)
                if interaction_mentions:
                    warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}")
    else:
        warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.")
    final_warnings = list(set(warnings))
    status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear"
    if not final_warnings:
        status = "clear"
        message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."
    print(f"--- Interaction Check Complete for '{potential_prescription}' ---")
    return json.dumps({
        "status": status,
        "message": message,
        "warnings": final_warnings
    })

@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
    """
    Flags a clinical risk with the provided description and urgency.
    """
    print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}")
    st.error(f"🚨 **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="🚨")
    return json.dumps({
        "status": "flagged",
        "message": f"Risk '{risk_description}' flagged with {urgency} urgency."
    })

search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results")

# --- LangGraph Setup ---
class AgentState(TypedDict):
    messages: Annotated[list[Any], operator.add]
    patient_data: Optional[dict]

tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
tool_executor = ToolExecutor(tools)
model = ChatGroq(temperature=ClinicalAppSettings.TEMPERATURE, model=ClinicalAppSettings.MODEL_NAME)
model_with_tools = model.bind_tools(tools)

# --- Graph Nodes (agent_node, tool_node) ---
def agent_node(state: AgentState):
    print("\n---AGENT NODE---")
    current_messages = state['messages']
    if not current_messages or not isinstance(current_messages[0], SystemMessage):
        print("Prepending System Prompt.")
        current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages
    print(f"Invoking LLM with {len(current_messages)} messages.")
    try:
        response = model_with_tools.invoke(current_messages)
        print(f"Agent Raw Response Type: {type(response)}")
        if hasattr(response, 'tool_calls') and response.tool_calls:
            print(f"Agent Response Tool Calls: {response.tool_calls}")
        else:
            print("Agent Response: No tool calls.")
    except Exception as e:
        print(f"ERROR in agent_node: {e}")
        traceback.print_exc()
        error_message = AIMessage(content=f"Error: {e}")
        return {"messages": [error_message]}
    return {"messages": [response]}

def tool_node(state: AgentState):
    print("\n---TOOL NODE---")
    tool_messages = []
    last_message = state['messages'][-1]
    if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None):
        print("Warning: Tool node called unexpectedly.")
        return {"messages": []}
    tool_calls = last_message.tool_calls
    print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}")
    prescriptions_requested = {}
    interaction_checks_requested = {}
    for call in tool_calls:
        tool_name = call.get('name')
        tool_args = call.get('args', {})
        if tool_name == 'prescribe_medication':
            med_name = tool_args.get('medication_name', '').lower()
            if med_name:
                prescriptions_requested[med_name] = call
        elif tool_name == 'check_drug_interactions':
            potential_med = tool_args.get('potential_prescription', '').lower()
            if potential_med:
                interaction_checks_requested[potential_med] = call
    valid_tool_calls_for_execution = []
    blocked_ids = set()
    for med_name, prescribe_call in prescriptions_requested.items():
        if med_name not in interaction_checks_requested:
            st.error(f"**Safety Violation:** AI tried to prescribe '{med_name}' without check.")
            error_msg = ToolMessage(content=json.dumps({
                "status": "error",
                "message": f"Interaction check needed for '{med_name}'."
            }), tool_call_id=prescribe_call['id'], name=prescribe_call['name'])
            tool_messages.append(error_msg)
            blocked_ids.add(prescribe_call['id'])
    valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids]
    patient_data = state.get("patient_data", {})
    patient_meds_full = patient_data.get("medications", {}).get("current", [])
    patient_allergies = patient_data.get("allergies", [])
    for call in valid_tool_calls_for_execution:
        if call['name'] == 'check_drug_interactions':
            if 'args' not in call:
                call['args'] = {}
            call['args']['current_medications'] = patient_meds_full
            call['args']['allergies'] = patient_allergies
            print(f"Augmented interaction check args for call ID {call['id']}")
    if valid_tool_calls_for_execution:
        print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}")
    try:
        responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True)
        for call, resp in zip(valid_tool_calls_for_execution, responses):
            tool_call_id = call['id']
            tool_name = call['name']
            if isinstance(resp, Exception):
                error_type = type(resp).__name__
                error_str = str(resp)
                print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}")
                traceback.print_exc()
                st.error(f"Error: {error_type}")
                error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"})
                tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name))
            else:
                print(f"Tool '{tool_name}' executed.")
                content_str = str(resp)
                tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name))
    except Exception as e:
        print(f"CRITICAL TOOL NODE ERROR: {e}")
        traceback.print_exc()
        st.error(f"Critical error: {e}")
        error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"})
        processed_ids = {msg.tool_call_id for msg in tool_messages}
        [tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name']))
         for call in valid_tool_calls_for_execution if call['id'] not in processed_ids]
    print(f"Returning {len(tool_messages)} tool messages.")
    return {"messages": tool_messages}

# --- Graph Edges (Routing Logic) ---
def should_continue(state: AgentState) -> str:
    print("\n---ROUTING DECISION---")
    last_message = state['messages'][-1] if state['messages'] else None
    if not isinstance(last_message, AIMessage):
        return "end_conversation_turn"
    if "Sorry, an internal error occurred" in last_message.content:
        return "end_conversation_turn"
    if getattr(last_message, 'tool_calls', None):
        return "continue_tools"
    else:
        return "end_conversation_turn"

# --- Graph Definition & Compilation ---
workflow = StateGraph(AgentState)
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
workflow.set_entry_point("agent")
workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
workflow.add_edge("tools", "agent")
app = workflow.compile()
print("LangGraph compiled successfully.")

# --- Streamlit UI ---
def main():
    st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
    st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
    st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME}")
    if "messages" not in st.session_state:
        st.session_state.messages = []
    if "patient_data" not in st.session_state:
        st.session_state.patient_data = None
    if "graph_app" not in st.session_state:
        st.session_state.graph_app = app

    # --- Patient Data Input Sidebar ---
    with st.sidebar:
        st.header("πŸ“„ Patient Intake Form")
        # Input fields... (Using shorter versions for brevity, assume full fields are here)
        st.subheader("Demographics")
        age = st.number_input("Age", 0, 120, 55)
        sex = st.selectbox("Sex", ["Male", "Female", "Other"])
        st.subheader("HPI")
        chief_complaint = st.text_input("Chief Complaint", "Chest pain")
        hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100)
        symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness"], default=["Nausea", "Diaphoresis"])
        st.subheader("History")
        pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI")
        psh = st.text_area("PSH", "Appendectomy")
        st.subheader("Meds & Allergies")
        current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID")
        allergies_str = st.text_area("Allergies", "Penicillin (rash)")
        st.subheader("Social/Family")
        social_history = st.text_area("SH", "Smoker")
        family_history = st.text_area("FHx", "Father MI")
        st.subheader("Vitals & Exam")
        col1, col2 = st.columns(2)
        with col1:
            temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f")
            hr_bpm = st.number_input("HR", 30, 250, 95)
            rr_rpm = st.number_input("RR", 5, 50, 18)
        with col2:
            bp_mmhg = st.text_input("BP", "155/90")
            spo2_percent = st.number_input("SpO2", 70, 100, 96)
            pain_scale = st.slider("Pain", 0, 10, 8)
        exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50)

        if st.button("Start/Update Consultation"):
            current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
            current_med_names_only = []
            for med in current_meds_list:
                match = re.match(r"^\s*([a-zA-Z\-]+)", med)
                if match:
                    current_med_names_only.append(match.group(1).lower())
            allergies_list = []
            for a in allergies_str.split(','):
                cleaned_allergy = a.strip()
                if cleaned_allergy:
                    match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy)
                    name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower()
                    allergies_list.append(name_part)
            st.session_state.patient_data = {
                "demographics": {"age": age, "sex": sex},
                "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
                "pmh": {"conditions": pmh},
                "psh": {"procedures": psh},
                "medications": {"current": current_meds_list, "names_only": current_med_names_only},
                "allergies": allergies_list,
                "social_history": {"details": social_history},
                "family_history": {"details": family_history},
                "vitals": {
                    "temp_c": temp_c,
                    "hr_bpm": hr_bpm,
                    "bp_mmhg": bp_mmhg,
                    "rr_rpm": rr_rpm,
                    "spo2_percent": spo2_percent,
                    "pain_scale": pain_scale
                },
                "exam_findings": {"notes": exam_notes}
            }
            red_flags = check_red_flags(st.session_state.patient_data)
            st.sidebar.markdown("---")
            if red_flags:
                st.sidebar.warning("**Initial Red Flags:**")
                [st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
            else:
                st.sidebar.success("No immediate red flags.")
            initial_prompt = "Initiate consultation. Review patient data and begin analysis."
            st.session_state.messages = [HumanMessage(content=initial_prompt)]
            st.success("Patient data loaded/updated.")

    # --- Main Chat Interface Area ---
    st.header("πŸ’¬ Clinical Consultation")
    # Display loop - SyntaxError Fixed
    for msg in st.session_state.messages:
        if isinstance(msg, HumanMessage):
            with st.chat_message("user"):
                st.markdown(msg.content)  # No key
        elif isinstance(msg, AIMessage):
            with st.chat_message("assistant"):
                ai_content = msg.content
                structured_output = None
                try:
                    json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
                    if json_match:
                        json_str = json_match.group(1)
                        prefix = ai_content[:json_match.start()].strip()
                        suffix = ai_content[json_match.end():].strip()
                        if prefix:
                            st.markdown(prefix)
                        structured_output = json.loads(json_str)
                        if suffix:
                            st.markdown(suffix)
                    elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"):
                        structured_output = json.loads(ai_content)
                        ai_content = ""
                    else:
                        st.markdown(ai_content)
                except Exception as e:
                    st.markdown(ai_content)
                    print(f"Error parsing/displaying AI JSON: {e}")
                if structured_output and isinstance(structured_output, dict):
                    st.divider()
                    st.subheader("πŸ“Š AI Analysis & Recommendations")
                    cols = st.columns(2)
                    with cols[0]:
                        st.markdown("**Assessment:**")
                        st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
                        st.markdown("**Differential Diagnosis:**")
                        ddx = structured_output.get('differential_diagnosis', [])
                        if ddx:
                            [st.expander(f"{'πŸ₯‡πŸ₯ˆπŸ₯‰'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
                        else:
                            st.info("No DDx provided.")
                        st.markdown("**Risk Assessment:**")
                        risk = structured_output.get('risk_assessment', {})
                        flags = risk.get('identified_red_flags', [])
                        concerns = risk.get("immediate_concerns", [])
                        comps = risk.get("potential_complications", [])
                        if flags:
                            st.warning(f"**Flags:** {', '.join(flags)}")
                        if concerns:
                            st.warning(f"**Concerns:** {', '.join(concerns)}")
                        if comps:
                            st.info(f"**Potential Complications:** {', '.join(comps)}")
                        if not flags and not concerns:
                            st.success("No major risks highlighted.")
                    with cols[1]:
                        st.markdown("**Recommended Plan:**")
                        plan = structured_output.get('recommended_plan', {})
                        for section in ["investigations","therapeutics","consultations","patient_education"]:
                            st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
                            items = plan.get(section)
                            if items and isinstance(items, list):
                                [st.markdown(f"- {item}") for item in items]
                            elif items:
                                st.markdown(f"- {items}")
                            else:
                                st.markdown("_None_")
                            st.markdown("")
                        st.markdown("**Rationale & Guideline Check:**")
                        st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
                        interaction_summary = structured_output.get("interaction_check_summary", "")
                        if interaction_summary:
                            st.markdown("**Interaction Check Summary:**")
                            st.markdown(f"> {interaction_summary}")
                        st.divider()

                if getattr(msg, 'tool_calls', None):
                    with st.expander("πŸ› οΈ AI requested actions", expanded=False):
                        if msg.tool_calls:
                            for tc in msg.tool_calls:
                                try:
                                    st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
                                except Exception as display_e:
                                    st.error(f"Could not display tool call arguments properly: {display_e}", icon="⚠️")
                                    st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
                        else:
                            st.caption("_No actions requested in this turn._")
        elif isinstance(msg, ToolMessage):
            tool_name_display = getattr(msg, 'name', 'tool_execution')
            with st.chat_message(tool_name_display, avatar="πŸ› οΈ"):
                try:
                    tool_data = json.loads(msg.content)
                    status = tool_data.get("status", "info")
                    message = tool_data.get("message", msg.content)
                    details = tool_data.get("details")
                    warnings = tool_data.get("warnings")
                    if status == "success" or status == "clear" or status == "flagged":
                        st.success(f"{message}", icon="βœ…" if status != "flagged" else "🚨")
                    elif status == "warning":
                        st.warning(f"{message}", icon="⚠️")
                    if warnings and isinstance(warnings, list):
                        st.caption("Details:")
                        [st.caption(f"- {warn}") for warn in warnings]
                    else:
                        st.error(f"{message}", icon="❌")
                    if details:
                        st.caption(f"Details: {details}")
                except json.JSONDecodeError:
                    st.info(f"{msg.content}")
                except Exception as e:
                    st.error(f"Error displaying tool message: {e}", icon="❌")
                    st.caption(f"Raw content: {msg.content}")

    # --- Chat Input Logic ---
    if prompt := st.chat_input("Your message or follow-up query..."):
        if not st.session_state.patient_data:
            st.warning("Please load patient data first.")
            st.stop()
        user_message = HumanMessage(content=prompt)
        st.session_state.messages.append(user_message)
        with st.chat_message("user"):
            st.markdown(prompt)
        current_state = AgentState(messages=st.session_state.messages, patient_data=st.session_state.patient_data)
        with st.spinner("SynapseAI is thinking..."):
            try:
                final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
                st.session_state.messages = final_state['messages']
            except Exception as e:
                print(f"CRITICAL ERROR: {e}")
                traceback.print_exc()
                st.error(f"Error: {e}")
        st.rerun()

    # Disclaimer
    st.markdown("---")
    st.warning("**Disclaimer:** SynapseAI is for demonstration...")

if __name__ == "__main__":
    main()