File size: 37,568 Bytes
71db5de 788074d b34efbf 788074d 4258926 99a7bc0 896de2d 63b0a52 4258926 b34efbf 71db5de b34efbf 99a7bc0 9988477 31ea2bf 99a7bc0 71db5de 896de2d 71db5de 99a7bc0 71db5de b34efbf 99a7bc0 b34efbf 99a7bc0 71db5de b34efbf 99a7bc0 b34efbf 99a7bc0 b34efbf 99a7bc0 b34efbf 99a7bc0 b34efbf 99a7bc0 6b2d9f7 99a7bc0 b34efbf 99a7bc0 71db5de 99a7bc0 6b2d9f7 896de2d 6b2d9f7 99a7bc0 6b2d9f7 99a7bc0 6b2d9f7 99a7bc0 6b2d9f7 99a7bc0 6b2d9f7 99a7bc0 6b2d9f7 31ea2bf 99a7bc0 31ea2bf 896de2d 31ea2bf 99a7bc0 4258926 b34efbf 5f93c27 99a7bc0 b34efbf 5f93c27 99a7bc0 896de2d 31ea2bf 5f93c27 99a7bc0 4258926 99a7bc0 9988477 b34efbf 99a7bc0 896de2d 5f93c27 99a7bc0 9988477 4258926 99a7bc0 9988477 4258926 9988477 31ea2bf 4258926 71db5de 4258926 99a7bc0 4258926 99a7bc0 4258926 99a7bc0 31ea2bf 99a7bc0 31ea2bf 71db5de 99a7bc0 31ea2bf 9988477 4258926 99a7bc0 31ea2bf 9988477 99a7bc0 4258926 31ea2bf 4258926 b34efbf 99a7bc0 4258926 9988477 4258926 99a7bc0 4258926 99a7bc0 31ea2bf 99a7bc0 71db5de 99a7bc0 9988477 4258926 99a7bc0 9988477 4258926 99a7bc0 4258926 6b2d9f7 99a7bc0 31ea2bf 99a7bc0 31ea2bf 99a7bc0 71db5de 99a7bc0 6b2d9f7 99a7bc0 4258926 b34efbf 99a7bc0 4258926 9988477 4258926 99a7bc0 b34efbf 31ea2bf b34efbf 71db5de 99a7bc0 71db5de 31ea2bf 9988477 99a7bc0 b564942 99a7bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
# -*- coding: utf-8 -*-
import streamlit as st
import requests
import json
import re
import os
import operator
import traceback
from functools import lru_cache
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
# from langchain_core.prompts import ChatPromptTemplate # Not explicitly used
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END
from typing import Optional, List, Dict, Any, TypedDict, Annotated
# --- Environment Variable Loading & Validation ---
load_dotenv()
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
missing_keys = []
if not UMLS_API_KEY:
missing_keys.append("UMLS_API_KEY")
if not GROQ_API_KEY:
missing_keys.append("GROQ_API_KEY")
if not TAVILY_API_KEY:
missing_keys.append("TAVILY_API_KEY")
if missing_keys:
st.error(f"Missing API Key(s): {', '.join(missing_keys)}.")
st.stop()
# --- Configuration & Constants ---
class ClinicalAppSettings:
APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
PAGE_LAYOUT = "wide"
MODEL_NAME = "llama3-70b-8192"
TEMPERATURE = 0.1
MAX_SEARCH_RESULTS = 3
class ClinicalPrompts:
SYSTEM_PROMPT = """
You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT REMAINS THE SAME - OMITTED FOR BREVITY]
"""
# --- API Helper Functions (get_rxcui, get_openfda_label, search_text_list) ---
UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
@lru_cache(maxsize=256)
def get_rxcui(drug_name: str) -> Optional[str]:
if not drug_name or not isinstance(drug_name, str):
return None
drug_name = drug_name.strip()
if not drug_name:
return None
print(f"RxNorm Lookup for: '{drug_name}'")
try:
params = {"name": drug_name, "search": 1}
response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
response.raise_for_status()
data = response.json()
if data and "idGroup" in data and "rxnormId" in data["idGroup"]:
rxcui = data["idGroup"]["rxnormId"][0]
print(f" Found RxCUI: {rxcui} for '{drug_name}'")
return rxcui
else:
params = {"name": drug_name}
response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10)
response.raise_for_status()
data = response.json()
if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
for group in data["drugGroup"]["conceptGroup"]:
if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
if "conceptProperties" in group and group["conceptProperties"]:
rxcui = group["conceptProperties"][0].get("rxcui")
if rxcui:
print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'")
return rxcui
print(f" RxCUI not found for '{drug_name}'.")
return None
except requests.exceptions.RequestException as e:
print(f" Error fetching RxCUI for '{drug_name}': {e}")
return None
except json.JSONDecodeError as e:
print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}")
return None
except Exception as e:
print(f" Unexpected error in get_rxcui for '{drug_name}': {e}")
return None
@lru_cache(maxsize=128)
def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
if not rxcui and not drug_name:
return None
print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}")
search_terms = []
if rxcui:
search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
if drug_name:
search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
search_query = " OR ".join(search_terms)
params = {"search": search_query, "limit": 1}
try:
response = requests.get(OPENFDA_API_BASE, params=params, timeout=15)
response.raise_for_status()
data = response.json()
if data and "results" in data and data["results"]:
print(f" Found OpenFDA label for query: {search_query}")
return data["results"][0]
print(f" No OpenFDA label found for query: {search_query}")
return None
except requests.exceptions.RequestException as e:
print(f" Error fetching OpenFDA label: {e}")
return None
except json.JSONDecodeError as e:
print(f" Error decoding OpenFDA JSON response: {e}")
return None
except Exception as e:
print(f" Unexpected error in get_openfda_label: {e}")
return None
def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
found_snippets = []
if not text_list or not search_terms:
return found_snippets
search_terms_lower = [str(term).lower() for term in search_terms if term]
for text_item in text_list:
if not isinstance(text_item, str):
continue
text_item_lower = text_item.lower()
for term in search_terms_lower:
if term in text_item_lower:
start_index = text_item_lower.find(term)
snippet_start = max(0, start_index - 50)
snippet_end = min(len(text_item), start_index + len(term) + 100)
snippet = text_item[snippet_start:snippet_end]
snippet = snippet.replace(term, f"**{term}**", 1)
found_snippets.append(f"...{snippet}...")
break
return found_snippets
# --- Other Helper Functions (parse_bp, check_red_flags, format_patient_data_for_prompt) ---
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
if not isinstance(bp_string, str):
return None
match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip())
if match:
return int(match.group(1)), int(match.group(2))
return None
def check_red_flags(patient_data: dict) -> List[str]:
flags = []
if not patient_data:
return flags
symptoms = patient_data.get("hpi", {}).get("symptoms", [])
vitals = patient_data.get("vitals", {})
history = patient_data.get("pmh", {}).get("conditions", "")
symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]
if "chest pain" in symptoms_lower:
flags.append("Red Flag: Chest Pain reported.")
if "shortness of breath" in symptoms_lower:
flags.append("Red Flag: Shortness of Breath reported.")
if "severe headache" in symptoms_lower:
flags.append("Red Flag: Severe Headache reported.")
if "sudden vision loss" in symptoms_lower:
flags.append("Red Flag: Sudden Vision Loss reported.")
if "weakness on one side" in symptoms_lower:
flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
if "hemoptysis" in symptoms_lower:
flags.append("Red Flag: Hemoptysis (coughing up blood).")
if "syncope" in symptoms_lower:
flags.append("Red Flag: Syncope (fainting).")
if vitals:
temp = vitals.get("temp_c")
hr = vitals.get("hr_bpm")
rr = vitals.get("rr_rpm")
spo2 = vitals.get("spo2_percent")
bp_str = vitals.get("bp_mmhg")
if temp is not None and temp >= 38.5:
flags.append(f"Red Flag: Fever ({temp}Β°C).")
if hr is not None and hr >= 120:
flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
if hr is not None and hr <= 50:
flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
if rr is not None and rr >= 24:
flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
if spo2 is not None and spo2 <= 92:
flags.append(f"Red Flag: Hypoxia ({spo2}%).")
if bp_str:
bp = parse_bp(bp_str)
if bp:
if bp[0] >= 180 or bp[1] >= 110:
flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
if bp[0] <= 90 or bp[1] <= 60:
flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
if history and isinstance(history, str):
history_lower = history.lower()
if "history of mi" in history_lower and "chest pain" in symptoms_lower:
flags.append("Red Flag: History of MI with current Chest Pain.")
if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower:
flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
return list(set(flags))
def format_patient_data_for_prompt(data: dict) -> str:
if not data:
return "No patient data provided."
prompt_str = ""
for key, value in data.items():
section_title = key.replace('_', ' ').title()
if isinstance(value, dict) and value:
has_content = any(sub_value for sub_value in value.values())
if has_content:
prompt_str += f"**{section_title}:**\n"
for sub_key, sub_value in value.items():
if sub_value:
prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
elif isinstance(value, list) and value:
prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
elif value and not isinstance(value, dict):
prompt_str += f"**{section_title}:** {value}\n"
return prompt_str.strip()
# --- Tool Definitions ---
class LabOrderInput(BaseModel):
test_name: str = Field(...)
reason: str = Field(...)
priority: str = Field("Routine")
class PrescriptionInput(BaseModel):
medication_name: str = Field(...)
dosage: str = Field(...)
route: str = Field(...)
frequency: str = Field(...)
duration: str = Field("As directed")
reason: str = Field(...)
class InteractionCheckInput(BaseModel):
potential_prescription: str = Field(...)
current_medications: Optional[List[str]] = Field(None)
allergies: Optional[List[str]] = Field(None)
class FlagRiskInput(BaseModel):
risk_description: str = Field(...)
urgency: str = Field("High")
@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
"""
Orders a lab test with the specified test name, reason, and priority.
"""
print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}")
return json.dumps({
"status": "success",
"message": f"Lab Ordered: {test_name} ({priority})",
"details": f"Reason: {reason}"
})
@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
"""
Prepares a prescription for the specified medication including dosage, route, frequency, and duration.
"""
print(f"Executing prescribe_medication: {medication_name} {dosage}...")
return json.dumps({
"status": "success",
"message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
"details": f"Duration: {duration}. Reason: {reason}"
})
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
"""
Checks for potential drug interactions and allergy risks for the given prescription.
"""
print(f"\n--- Executing REAL check_drug_interactions ---")
print(f"Checking potential prescription: '{potential_prescription}'")
warnings = []
potential_med_lower = potential_prescription.lower().strip()
current_meds_list = current_medications or []
allergies_list = allergies or []
current_med_names_lower = []
for med in current_meds_list:
match = re.match(r"^\s*([a-zA-Z\-]+)", str(med))
if match:
current_med_names_lower.append(match.group(1).lower())
allergies_lower = [str(a).lower().strip() for a in allergies_list if a]
print(f" Against Current Meds (names): {current_med_names_lower}")
print(f" Against Allergies: {allergies_lower}")
print(f" Step 1: Normalizing '{potential_prescription}'...")
potential_rxcui = get_rxcui(potential_prescription)
potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription)
if not potential_rxcui and not potential_label:
warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.")
print(" Step 2: Performing Allergy Check...")
for allergy in allergies_lower:
if allergy == potential_med_lower:
warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.")
elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]:
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.")
elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]:
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.")
elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]:
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.")
if potential_label:
contraindications = potential_label.get("contraindications")
warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings")
if contraindications:
allergy_mentions_ci = search_text_list(contraindications, allergies_lower)
if allergy_mentions_ci:
warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}")
if warnings_section:
allergy_mentions_warn = search_text_list(warnings_section, allergies_lower)
if allergy_mentions_warn:
warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}")
print(" Step 3: Performing Drug-Drug Interaction Check...")
if potential_rxcui or potential_label:
for current_med_name in current_med_names_lower:
if not current_med_name or current_med_name == potential_med_lower:
continue
print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'...")
current_rxcui = get_rxcui(current_med_name)
current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name)
search_terms_for_current = [current_med_name]
if current_rxcui:
search_terms_for_current.append(current_rxcui)
search_terms_for_potential = [potential_med_lower]
if potential_rxcui:
search_terms_for_potential.append(potential_rxcui)
interaction_found_flag = False
if potential_label and potential_label.get("drug_interactions"):
interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current)
if interaction_mentions:
warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}")
interaction_found_flag = True
if current_label and current_label.get("drug_interactions") and not interaction_found_flag:
interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential)
if interaction_mentions:
warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}")
else:
warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.")
final_warnings = list(set(warnings))
status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear"
if not final_warnings:
status = "clear"
message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."
print(f"--- Interaction Check Complete for '{potential_prescription}' ---")
return json.dumps({
"status": status,
"message": message,
"warnings": final_warnings
})
@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
"""
Flags a clinical risk with the provided description and urgency.
"""
print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}")
st.error(f"π¨ **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="π¨")
return json.dumps({
"status": "flagged",
"message": f"Risk '{risk_description}' flagged with {urgency} urgency."
})
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results")
# --- LangGraph Setup ---
class AgentState(TypedDict):
messages: Annotated[list[Any], operator.add]
patient_data: Optional[dict]
tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
tool_executor = ToolExecutor(tools)
model = ChatGroq(temperature=ClinicalAppSettings.TEMPERATURE, model=ClinicalAppSettings.MODEL_NAME)
model_with_tools = model.bind_tools(tools)
# --- Graph Nodes (agent_node, tool_node) ---
def agent_node(state: AgentState):
print("\n---AGENT NODE---")
current_messages = state['messages']
if not current_messages or not isinstance(current_messages[0], SystemMessage):
print("Prepending System Prompt.")
current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages
print(f"Invoking LLM with {len(current_messages)} messages.")
try:
response = model_with_tools.invoke(current_messages)
print(f"Agent Raw Response Type: {type(response)}")
if hasattr(response, 'tool_calls') and response.tool_calls:
print(f"Agent Response Tool Calls: {response.tool_calls}")
else:
print("Agent Response: No tool calls.")
except Exception as e:
print(f"ERROR in agent_node: {e}")
traceback.print_exc()
error_message = AIMessage(content=f"Error: {e}")
return {"messages": [error_message]}
return {"messages": [response]}
def tool_node(state: AgentState):
print("\n---TOOL NODE---")
tool_messages = []
last_message = state['messages'][-1]
if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None):
print("Warning: Tool node called unexpectedly.")
return {"messages": []}
tool_calls = last_message.tool_calls
print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}")
prescriptions_requested = {}
interaction_checks_requested = {}
for call in tool_calls:
tool_name = call.get('name')
tool_args = call.get('args', {})
if tool_name == 'prescribe_medication':
med_name = tool_args.get('medication_name', '').lower()
if med_name:
prescriptions_requested[med_name] = call
elif tool_name == 'check_drug_interactions':
potential_med = tool_args.get('potential_prescription', '').lower()
if potential_med:
interaction_checks_requested[potential_med] = call
valid_tool_calls_for_execution = []
blocked_ids = set()
for med_name, prescribe_call in prescriptions_requested.items():
if med_name not in interaction_checks_requested:
st.error(f"**Safety Violation:** AI tried to prescribe '{med_name}' without check.")
error_msg = ToolMessage(content=json.dumps({
"status": "error",
"message": f"Interaction check needed for '{med_name}'."
}), tool_call_id=prescribe_call['id'], name=prescribe_call['name'])
tool_messages.append(error_msg)
blocked_ids.add(prescribe_call['id'])
valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids]
patient_data = state.get("patient_data", {})
patient_meds_full = patient_data.get("medications", {}).get("current", [])
patient_allergies = patient_data.get("allergies", [])
for call in valid_tool_calls_for_execution:
if call['name'] == 'check_drug_interactions':
if 'args' not in call:
call['args'] = {}
call['args']['current_medications'] = patient_meds_full
call['args']['allergies'] = patient_allergies
print(f"Augmented interaction check args for call ID {call['id']}")
if valid_tool_calls_for_execution:
print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}")
try:
responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True)
for call, resp in zip(valid_tool_calls_for_execution, responses):
tool_call_id = call['id']
tool_name = call['name']
if isinstance(resp, Exception):
error_type = type(resp).__name__
error_str = str(resp)
print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}")
traceback.print_exc()
st.error(f"Error: {error_type}")
error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"})
tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name))
else:
print(f"Tool '{tool_name}' executed.")
content_str = str(resp)
tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name))
except Exception as e:
print(f"CRITICAL TOOL NODE ERROR: {e}")
traceback.print_exc()
st.error(f"Critical error: {e}")
error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"})
processed_ids = {msg.tool_call_id for msg in tool_messages}
[tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name']))
for call in valid_tool_calls_for_execution if call['id'] not in processed_ids]
print(f"Returning {len(tool_messages)} tool messages.")
return {"messages": tool_messages}
# --- Graph Edges (Routing Logic) ---
def should_continue(state: AgentState) -> str:
print("\n---ROUTING DECISION---")
last_message = state['messages'][-1] if state['messages'] else None
if not isinstance(last_message, AIMessage):
return "end_conversation_turn"
if "Sorry, an internal error occurred" in last_message.content:
return "end_conversation_turn"
if getattr(last_message, 'tool_calls', None):
return "continue_tools"
else:
return "end_conversation_turn"
# --- Graph Definition & Compilation ---
workflow = StateGraph(AgentState)
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
workflow.set_entry_point("agent")
workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
workflow.add_edge("tools", "agent")
app = workflow.compile()
print("LangGraph compiled successfully.")
# --- Streamlit UI ---
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME}")
if "messages" not in st.session_state:
st.session_state.messages = []
if "patient_data" not in st.session_state:
st.session_state.patient_data = None
if "graph_app" not in st.session_state:
st.session_state.graph_app = app
# --- Patient Data Input Sidebar ---
with st.sidebar:
st.header("π Patient Intake Form")
# Input fields... (Using shorter versions for brevity, assume full fields are here)
st.subheader("Demographics")
age = st.number_input("Age", 0, 120, 55)
sex = st.selectbox("Sex", ["Male", "Female", "Other"])
st.subheader("HPI")
chief_complaint = st.text_input("Chief Complaint", "Chest pain")
hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100)
symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness"], default=["Nausea", "Diaphoresis"])
st.subheader("History")
pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI")
psh = st.text_area("PSH", "Appendectomy")
st.subheader("Meds & Allergies")
current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID")
allergies_str = st.text_area("Allergies", "Penicillin (rash)")
st.subheader("Social/Family")
social_history = st.text_area("SH", "Smoker")
family_history = st.text_area("FHx", "Father MI")
st.subheader("Vitals & Exam")
col1, col2 = st.columns(2)
with col1:
temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f")
hr_bpm = st.number_input("HR", 30, 250, 95)
rr_rpm = st.number_input("RR", 5, 50, 18)
with col2:
bp_mmhg = st.text_input("BP", "155/90")
spo2_percent = st.number_input("SpO2", 70, 100, 96)
pain_scale = st.slider("Pain", 0, 10, 8)
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50)
if st.button("Start/Update Consultation"):
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
current_med_names_only = []
for med in current_meds_list:
match = re.match(r"^\s*([a-zA-Z\-]+)", med)
if match:
current_med_names_only.append(match.group(1).lower())
allergies_list = []
for a in allergies_str.split(','):
cleaned_allergy = a.strip()
if cleaned_allergy:
match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy)
name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower()
allergies_list.append(name_part)
st.session_state.patient_data = {
"demographics": {"age": age, "sex": sex},
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
"pmh": {"conditions": pmh},
"psh": {"procedures": psh},
"medications": {"current": current_meds_list, "names_only": current_med_names_only},
"allergies": allergies_list,
"social_history": {"details": social_history},
"family_history": {"details": family_history},
"vitals": {
"temp_c": temp_c,
"hr_bpm": hr_bpm,
"bp_mmhg": bp_mmhg,
"rr_rpm": rr_rpm,
"spo2_percent": spo2_percent,
"pain_scale": pain_scale
},
"exam_findings": {"notes": exam_notes}
}
red_flags = check_red_flags(st.session_state.patient_data)
st.sidebar.markdown("---")
if red_flags:
st.sidebar.warning("**Initial Red Flags:**")
[st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
else:
st.sidebar.success("No immediate red flags.")
initial_prompt = "Initiate consultation. Review patient data and begin analysis."
st.session_state.messages = [HumanMessage(content=initial_prompt)]
st.success("Patient data loaded/updated.")
# --- Main Chat Interface Area ---
st.header("π¬ Clinical Consultation")
# Display loop - SyntaxError Fixed
for msg in st.session_state.messages:
if isinstance(msg, HumanMessage):
with st.chat_message("user"):
st.markdown(msg.content) # No key
elif isinstance(msg, AIMessage):
with st.chat_message("assistant"):
ai_content = msg.content
structured_output = None
try:
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
if json_match:
json_str = json_match.group(1)
prefix = ai_content[:json_match.start()].strip()
suffix = ai_content[json_match.end():].strip()
if prefix:
st.markdown(prefix)
structured_output = json.loads(json_str)
if suffix:
st.markdown(suffix)
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"):
structured_output = json.loads(ai_content)
ai_content = ""
else:
st.markdown(ai_content)
except Exception as e:
st.markdown(ai_content)
print(f"Error parsing/displaying AI JSON: {e}")
if structured_output and isinstance(structured_output, dict):
st.divider()
st.subheader("π AI Analysis & Recommendations")
cols = st.columns(2)
with cols[0]:
st.markdown("**Assessment:**")
st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
st.markdown("**Differential Diagnosis:**")
ddx = structured_output.get('differential_diagnosis', [])
if ddx:
[st.expander(f"{'π₯π₯π₯'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
else:
st.info("No DDx provided.")
st.markdown("**Risk Assessment:**")
risk = structured_output.get('risk_assessment', {})
flags = risk.get('identified_red_flags', [])
concerns = risk.get("immediate_concerns", [])
comps = risk.get("potential_complications", [])
if flags:
st.warning(f"**Flags:** {', '.join(flags)}")
if concerns:
st.warning(f"**Concerns:** {', '.join(concerns)}")
if comps:
st.info(f"**Potential Complications:** {', '.join(comps)}")
if not flags and not concerns:
st.success("No major risks highlighted.")
with cols[1]:
st.markdown("**Recommended Plan:**")
plan = structured_output.get('recommended_plan', {})
for section in ["investigations","therapeutics","consultations","patient_education"]:
st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
items = plan.get(section)
if items and isinstance(items, list):
[st.markdown(f"- {item}") for item in items]
elif items:
st.markdown(f"- {items}")
else:
st.markdown("_None_")
st.markdown("")
st.markdown("**Rationale & Guideline Check:**")
st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
interaction_summary = structured_output.get("interaction_check_summary", "")
if interaction_summary:
st.markdown("**Interaction Check Summary:**")
st.markdown(f"> {interaction_summary}")
st.divider()
if getattr(msg, 'tool_calls', None):
with st.expander("π οΈ AI requested actions", expanded=False):
if msg.tool_calls:
for tc in msg.tool_calls:
try:
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
except Exception as display_e:
st.error(f"Could not display tool call arguments properly: {display_e}", icon="β οΈ")
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
else:
st.caption("_No actions requested in this turn._")
elif isinstance(msg, ToolMessage):
tool_name_display = getattr(msg, 'name', 'tool_execution')
with st.chat_message(tool_name_display, avatar="π οΈ"):
try:
tool_data = json.loads(msg.content)
status = tool_data.get("status", "info")
message = tool_data.get("message", msg.content)
details = tool_data.get("details")
warnings = tool_data.get("warnings")
if status == "success" or status == "clear" or status == "flagged":
st.success(f"{message}", icon="β
" if status != "flagged" else "π¨")
elif status == "warning":
st.warning(f"{message}", icon="β οΈ")
if warnings and isinstance(warnings, list):
st.caption("Details:")
[st.caption(f"- {warn}") for warn in warnings]
else:
st.error(f"{message}", icon="β")
if details:
st.caption(f"Details: {details}")
except json.JSONDecodeError:
st.info(f"{msg.content}")
except Exception as e:
st.error(f"Error displaying tool message: {e}", icon="β")
st.caption(f"Raw content: {msg.content}")
# --- Chat Input Logic ---
if prompt := st.chat_input("Your message or follow-up query..."):
if not st.session_state.patient_data:
st.warning("Please load patient data first.")
st.stop()
user_message = HumanMessage(content=prompt)
st.session_state.messages.append(user_message)
with st.chat_message("user"):
st.markdown(prompt)
current_state = AgentState(messages=st.session_state.messages, patient_data=st.session_state.patient_data)
with st.spinner("SynapseAI is thinking..."):
try:
final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
st.session_state.messages = final_state['messages']
except Exception as e:
print(f"CRITICAL ERROR: {e}")
traceback.print_exc()
st.error(f"Error: {e}")
st.rerun()
# Disclaimer
st.markdown("---")
st.warning("**Disclaimer:** SynapseAI is for demonstration...")
if __name__ == "__main__":
main()
|