|
import streamlit as st |
|
import json |
|
import re |
|
import os |
|
import traceback |
|
import logging |
|
from dotenv import load_dotenv |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
try: |
|
from agent import ClinicalAgent, AgentState, check_red_flags |
|
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage |
|
except ImportError as e: |
|
logger.exception("Failed to import from agent.py") |
|
st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.") |
|
st.stop() |
|
|
|
|
|
load_dotenv() |
|
required_keys = ["UMLS_API_KEY", "GROQ_API_KEY", "TAVILY_API_KEY"] |
|
missing = [key for key in required_keys if not os.getenv(key)] |
|
if missing: |
|
st.error(f"Missing required API Key(s): {', '.join(missing)}. Please set them in environment variables.") |
|
st.stop() |
|
|
|
|
|
class ClinicalAppSettings: |
|
APP_TITLE = "SynapseAI" |
|
PAGE_LAYOUT = "wide" |
|
MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)" |
|
|
|
|
|
@st.cache_resource |
|
def get_agent(): |
|
try: |
|
return ClinicalAgent() |
|
except Exception as e: |
|
logger.exception("Failed to initialize ClinicalAgent") |
|
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.") |
|
st.stop() |
|
|
|
|
|
def load_patient_intake(): |
|
st.header("π Patient Intake Form") |
|
|
|
age = st.number_input("Age", min_value=0, max_value=120, value=55, key="sb_age") |
|
sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex") |
|
|
|
|
|
chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc") |
|
hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi") |
|
symptoms = st.multiselect( |
|
"Symptoms", |
|
["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], |
|
default=["Nausea", "Diaphoresis"], |
|
key="sb_sym" |
|
) |
|
|
|
|
|
pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh") |
|
psh = st.text_area("PSH", "Appendectomy", key="sb_psh") |
|
|
|
|
|
current_meds_str = st.text_area( |
|
"Current Meds", |
|
"Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily", |
|
key="sb_meds" |
|
) |
|
allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies") |
|
|
|
|
|
social_history = st.text_area("SH", "Smoker", key="sb_sh") |
|
family_history = st.text_area("FHx", "Father MI", key="sb_fhx") |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
temp_c = st.number_input("Temp C", min_value=35.0, max_value=42.0, value=36.8, format="%.1f", key="sb_temp") |
|
hr_bpm = st.number_input("HR", min_value=30, max_value=250, value=95, key="sb_hr") |
|
rr_rpm = st.number_input("RR", min_value=5, max_value=50, value=18, key="sb_rr") |
|
with col2: |
|
bp_mmhg = st.text_input("BP", "155/90", key="sb_bp") |
|
spo2_percent = st.number_input("SpO2", min_value=70, max_value=100, value=96, key="sb_spo2") |
|
pain_scale = st.slider("Pain", min_value=0, max_value=10, value=8, key="sb_pain") |
|
|
|
|
|
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=68, key="sb_exam") |
|
|
|
|
|
current_meds_list = [m.strip() for m in current_meds_str.splitlines() if m.strip()] |
|
current_med_names_only = [ |
|
m.group(1).lower() |
|
for med in current_meds_list |
|
if (m := re.match(r"^\s*([A-Za-z-]+)", med)) |
|
] |
|
allergies_list = [ |
|
(m.group(1).strip().lower() if (m := re.match(r"^\s*([A-Za-z\s/-]+)", a.strip())) else a.strip().lower()) |
|
for a in allergies_str.split(",") |
|
if a.strip() |
|
] |
|
|
|
|
|
bp_sys, bp_dia = None, None |
|
if "/" in bp_mmhg: |
|
try: |
|
bp_sys, bp_dia = map(int, bp_mmhg.split("/")) |
|
except ValueError: |
|
logger.warning(f"Unable to parse BP '{bp_mmhg}'") |
|
|
|
return { |
|
"demographics": {"age": age, "sex": sex}, |
|
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, |
|
"pmh": {"conditions": pmh}, |
|
"psh": {"procedures": psh}, |
|
"medications": {"current": current_meds_list, "names_only": current_med_names_only}, |
|
"allergies": allergies_list, |
|
"social_history": {"details": social_history}, |
|
"family_history": {"details": family_history}, |
|
"vitals": { |
|
"temp_c": temp_c, |
|
"hr_bpm": hr_bpm, |
|
"bp_mmhg": bp_mmhg, |
|
"bp_sys": bp_sys, |
|
"bp_dia": bp_dia, |
|
"rr_rpm": rr_rpm, |
|
"spo2_percent": spo2_percent, |
|
"pain_scale": pain_scale |
|
}, |
|
"exam_findings": {"notes": exam_notes}, |
|
} |
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT) |
|
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}") |
|
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}") |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
if "patient_data" not in st.session_state: |
|
st.session_state.patient_data = None |
|
if "summary" not in st.session_state: |
|
st.session_state.summary = None |
|
if "agent" not in st.session_state: |
|
st.session_state.agent = get_agent() |
|
|
|
|
|
with st.sidebar: |
|
patient_data = load_patient_intake() |
|
if st.button("Start/Update Consultation", key="sb_start"): |
|
st.session_state.patient_data = patient_data |
|
red_flags = check_red_flags(patient_data) |
|
st.sidebar.markdown("---") |
|
if red_flags: |
|
st.sidebar.warning("**Initial Red Flags:**") |
|
for flag in red_flags: |
|
st.sidebar.warning(f"- {flag.replace('Red Flag: ', '')}") |
|
else: |
|
st.sidebar.success("No immediate red flags.") |
|
st.session_state.messages = [HumanMessage(content="Initiate consultation. Review patient data and begin analysis.")] |
|
st.session_state.summary = None |
|
st.success("Patient data loaded/updated.") |
|
st.rerun() |
|
|
|
|
|
st.header("π¬ Clinical Consultation") |
|
for msg in st.session_state.messages: |
|
if isinstance(msg, HumanMessage): |
|
with st.chat_message("user"): |
|
st.markdown(msg.content) |
|
elif isinstance(msg, AIMessage): |
|
with st.chat_message("assistant"): |
|
ai_content = msg.content |
|
structured_output = None |
|
try: |
|
match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE) |
|
if match: |
|
payload = match.group(1) |
|
structured_output = json.loads(payload) |
|
prefix = ai_content[:match.start()].strip() |
|
suffix = ai_content[match.end():].strip() |
|
if prefix: |
|
st.markdown(prefix) |
|
if suffix: |
|
st.markdown(suffix) |
|
else: |
|
st.markdown(ai_content) |
|
except (AttributeError, json.JSONDecodeError) as e: |
|
logger.warning(f"JSON parse error: {e}") |
|
st.markdown(ai_content) |
|
|
|
if structured_output and isinstance(structured_output, dict): |
|
st.divider() |
|
|
|
cols = st.columns(2) |
|
with cols[0]: |
|
st.markdown("**Assessment:**") |
|
st.markdown(f"> {structured_output.get('assessment', 'N/A')}") |
|
st.markdown("**Differential Diagnosis:**") |
|
ddx = structured_output.get('differential_diagnosis', []) |
|
if ddx: |
|
for item in ddx: |
|
likelihood = item.get('likelihood', 'Low') |
|
icon = 'π₯' if likelihood == 'High' else ('π₯' if likelihood == 'Medium' else 'π₯') |
|
with st.expander(f"{icon} {item.get('diagnosis', 'Unknown')} ({likelihood})"): |
|
st.write(f"**Rationale:** {item.get('rationale', 'N/A')}") |
|
else: |
|
st.info("No DDx provided.") |
|
|
|
st.markdown("**Risk Assessment:**") |
|
risk = structured_output.get('risk_assessment', {}) |
|
for key, style in [('identified_red_flags', st.warning), ('immediate_concerns', st.warning), ('potential_complications', st.info)]: |
|
items = risk.get(key, []) |
|
if items: |
|
style(f"**{key.replace('_', ' ').capitalize()}:** {', '.join(items)}") |
|
if not any(risk.get(k) for k in ['identified_red_flags', 'immediate_concerns', 'potential_complications']): |
|
st.success("No specific risks highlighted.") |
|
|
|
with cols[1]: |
|
st.markdown("**Recommended Plan:**") |
|
plan = structured_output.get('recommended_plan', {}) |
|
for section in ["investigations","therapeutics","consultations","patient_education"]: |
|
st.markdown(f"_{section.replace('_',' ').capitalize()}:_") |
|
items = plan.get(section) |
|
if isinstance(items, list): |
|
for it in items: |
|
st.markdown(f"- {it}") |
|
elif items: |
|
st.markdown(f"- {items}") |
|
else: |
|
st.markdown("_None_") |
|
|
|
st.markdown("**Rationale & Guideline Check:**") |
|
st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}") |
|
if interaction := structured_output.get('interaction_check_summary'): |
|
st.markdown("**Interaction Check Summary:**") |
|
st.markdown(f"> {interaction}") |
|
st.divider() |
|
|
|
elif isinstance(msg, ToolMessage): |
|
tool_name = getattr(msg, 'name', 'tool_execution') |
|
with st.chat_message(tool_name, avatar="π οΈ"): |
|
try: |
|
data = json.loads(msg.content) |
|
status = data.get('status', 'info') |
|
message = data.get('message', msg.content) |
|
if tool_name == "flag_risk" and status == "flagged": |
|
st.error(f"π¨ **RISK FLAGGED:** {message}") |
|
elif status in ("success", "clear"): |
|
st.success(message) |
|
elif status == "warning": |
|
st.warning(message) |
|
else: |
|
st.error(message) |
|
if details := data.get('details'): |
|
st.caption(f"Details: {details}") |
|
except json.JSONDecodeError: |
|
st.info(msg.content) |
|
|
|
|
|
if prompt := st.chat_input("Your message or follow-up query..."): |
|
if not st.session_state.patient_data: |
|
st.warning("Please load patient data first.") |
|
st.stop() |
|
user_msg = HumanMessage(content=prompt) |
|
st.session_state.messages.append(user_msg) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
current_state = { |
|
"messages": st.session_state.messages, |
|
"patient_data": st.session_state.patient_data, |
|
"summary": st.session_state.summary, |
|
"interaction_warnings": None |
|
} |
|
with st.spinner("SynapseAI is processing..."): |
|
try: |
|
final_state = st.session_state.agent.invoke_turn(current_state) |
|
st.session_state.messages = final_state.get('messages', []) |
|
st.session_state.summary = final_state.get('summary') |
|
except Exception as e: |
|
logger.exception("Error during agent.invoke_turn") |
|
st.error(f"Error: {e}") |
|
st.session_state.messages.append(AIMessage(content=f"Error processing request: {e}")) |
|
st.rerun() |
|
|
|
|
|
st.markdown("---") |
|
st.warning("**Disclaimer:** SynapseAI is for demonstration only and not for clinical use.") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|