SynapseAI / app.py
mgbam's picture
Update app.py
bb53fca verified
import streamlit as st
import json
import re
import os
import traceback
import logging
from dotenv import load_dotenv
# Configure logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
# Import agent logic and message types
try:
from agent import ClinicalAgent, AgentState, check_red_flags
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
except ImportError as e:
logger.exception("Failed to import from agent.py")
st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.")
st.stop()
# --- Environment Variable Loading & Validation ---
load_dotenv()
required_keys = ["UMLS_API_KEY", "GROQ_API_KEY", "TAVILY_API_KEY"]
missing = [key for key in required_keys if not os.getenv(key)]
if missing:
st.error(f"Missing required API Key(s): {', '.join(missing)}. Please set them in environment variables.")
st.stop()
# --- App Configuration ---
class ClinicalAppSettings:
APP_TITLE = "SynapseAI"
PAGE_LAYOUT = "wide"
MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)"
# Cache the agent to avoid re-initialization on each rerun
@st.cache_resource
def get_agent():
try:
return ClinicalAgent()
except Exception as e:
logger.exception("Failed to initialize ClinicalAgent")
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
st.stop()
# Sidebar patient intake helper
def load_patient_intake():
st.header("πŸ“„ Patient Intake Form")
# Demographics
age = st.number_input("Age", min_value=0, max_value=120, value=55, key="sb_age")
sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
# HPI
chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc")
hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi")
symptoms = st.multiselect(
"Symptoms",
["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"],
default=["Nausea", "Diaphoresis"],
key="sb_sym"
)
# History
pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh")
psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
# Meds & Allergies
current_meds_str = st.text_area(
"Current Meds",
"Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily",
key="sb_meds"
)
allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
# Social/Family
social_history = st.text_area("SH", "Smoker", key="sb_sh")
family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
# Vitals & Exam
col1, col2 = st.columns(2)
with col1:
temp_c = st.number_input("Temp C", min_value=35.0, max_value=42.0, value=36.8, format="%.1f", key="sb_temp")
hr_bpm = st.number_input("HR", min_value=30, max_value=250, value=95, key="sb_hr")
rr_rpm = st.number_input("RR", min_value=5, max_value=50, value=18, key="sb_rr")
with col2:
bp_mmhg = st.text_input("BP", "155/90", key="sb_bp")
spo2_percent = st.number_input("SpO2", min_value=70, max_value=100, value=96, key="sb_spo2")
pain_scale = st.slider("Pain", min_value=0, max_value=10, value=8, key="sb_pain")
# Updated minimum height to 68px to satisfy Streamlit requirement
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=68, key="sb_exam")
# Process meds and allergies with comprehensions
current_meds_list = [m.strip() for m in current_meds_str.splitlines() if m.strip()]
current_med_names_only = [
m.group(1).lower()
for med in current_meds_list
if (m := re.match(r"^\s*([A-Za-z-]+)", med))
]
allergies_list = [
(m.group(1).strip().lower() if (m := re.match(r"^\s*([A-Za-z\s/-]+)", a.strip())) else a.strip().lower())
for a in allergies_str.split(",")
if a.strip()
]
# Parse blood pressure
bp_sys, bp_dia = None, None
if "/" in bp_mmhg:
try:
bp_sys, bp_dia = map(int, bp_mmhg.split("/"))
except ValueError:
logger.warning(f"Unable to parse BP '{bp_mmhg}'")
return {
"demographics": {"age": age, "sex": sex},
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
"pmh": {"conditions": pmh},
"psh": {"procedures": psh},
"medications": {"current": current_meds_list, "names_only": current_med_names_only},
"allergies": allergies_list,
"social_history": {"details": social_history},
"family_history": {"details": family_history},
"vitals": {
"temp_c": temp_c,
"hr_bpm": hr_bpm,
"bp_mmhg": bp_mmhg,
"bp_sys": bp_sys,
"bp_dia": bp_dia,
"rr_rpm": rr_rpm,
"spo2_percent": spo2_percent,
"pain_scale": pain_scale
},
"exam_findings": {"notes": exam_notes},
}
# Main application
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "patient_data" not in st.session_state:
st.session_state.patient_data = None
if "summary" not in st.session_state:
st.session_state.summary = None
if "agent" not in st.session_state:
st.session_state.agent = get_agent()
# Sidebar intake
with st.sidebar:
patient_data = load_patient_intake()
if st.button("Start/Update Consultation", key="sb_start"):
st.session_state.patient_data = patient_data
red_flags = check_red_flags(patient_data)
st.sidebar.markdown("---")
if red_flags:
st.sidebar.warning("**Initial Red Flags:**")
for flag in red_flags:
st.sidebar.warning(f"- {flag.replace('Red Flag: ', '')}")
else:
st.sidebar.success("No immediate red flags.")
st.session_state.messages = [HumanMessage(content="Initiate consultation. Review patient data and begin analysis.")]
st.session_state.summary = None
st.success("Patient data loaded/updated.")
st.rerun()
# Chat area
st.header("πŸ’¬ Clinical Consultation")
for msg in st.session_state.messages:
if isinstance(msg, HumanMessage):
with st.chat_message("user"):
st.markdown(msg.content)
elif isinstance(msg, AIMessage):
with st.chat_message("assistant"):
ai_content = msg.content
structured_output = None
try:
match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
if match:
payload = match.group(1)
structured_output = json.loads(payload)
prefix = ai_content[:match.start()].strip()
suffix = ai_content[match.end():].strip()
if prefix:
st.markdown(prefix)
if suffix:
st.markdown(suffix)
else:
st.markdown(ai_content)
except (AttributeError, json.JSONDecodeError) as e:
logger.warning(f"JSON parse error: {e}")
st.markdown(ai_content)
if structured_output and isinstance(structured_output, dict):
st.divider()
# Display structured JSON sections
cols = st.columns(2)
with cols[0]:
st.markdown("**Assessment:**")
st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
st.markdown("**Differential Diagnosis:**")
ddx = structured_output.get('differential_diagnosis', [])
if ddx:
for item in ddx:
likelihood = item.get('likelihood', 'Low')
icon = 'πŸ₯‡' if likelihood == 'High' else ('πŸ₯ˆ' if likelihood == 'Medium' else 'πŸ₯‰')
with st.expander(f"{icon} {item.get('diagnosis', 'Unknown')} ({likelihood})"):
st.write(f"**Rationale:** {item.get('rationale', 'N/A')}")
else:
st.info("No DDx provided.")
st.markdown("**Risk Assessment:**")
risk = structured_output.get('risk_assessment', {})
for key, style in [('identified_red_flags', st.warning), ('immediate_concerns', st.warning), ('potential_complications', st.info)]:
items = risk.get(key, [])
if items:
style(f"**{key.replace('_', ' ').capitalize()}:** {', '.join(items)}")
if not any(risk.get(k) for k in ['identified_red_flags', 'immediate_concerns', 'potential_complications']):
st.success("No specific risks highlighted.")
with cols[1]:
st.markdown("**Recommended Plan:**")
plan = structured_output.get('recommended_plan', {})
for section in ["investigations","therapeutics","consultations","patient_education"]:
st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
items = plan.get(section)
if isinstance(items, list):
for it in items:
st.markdown(f"- {it}")
elif items:
st.markdown(f"- {items}")
else:
st.markdown("_None_")
st.markdown("**Rationale & Guideline Check:**")
st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
if interaction := structured_output.get('interaction_check_summary'):
st.markdown("**Interaction Check Summary:**")
st.markdown(f"> {interaction}")
st.divider()
elif isinstance(msg, ToolMessage):
tool_name = getattr(msg, 'name', 'tool_execution')
with st.chat_message(tool_name, avatar="πŸ› οΈ"):
try:
data = json.loads(msg.content)
status = data.get('status', 'info')
message = data.get('message', msg.content)
if tool_name == "flag_risk" and status == "flagged":
st.error(f"🚨 **RISK FLAGGED:** {message}")
elif status in ("success", "clear"):
st.success(message)
elif status == "warning":
st.warning(message)
else:
st.error(message)
if details := data.get('details'):
st.caption(f"Details: {details}")
except json.JSONDecodeError:
st.info(msg.content)
# --- Chat Input ---
if prompt := st.chat_input("Your message or follow-up query..."):
if not st.session_state.patient_data:
st.warning("Please load patient data first.")
st.stop()
user_msg = HumanMessage(content=prompt)
st.session_state.messages.append(user_msg)
with st.chat_message("user"):
st.markdown(prompt)
current_state = {
"messages": st.session_state.messages,
"patient_data": st.session_state.patient_data,
"summary": st.session_state.summary,
"interaction_warnings": None
}
with st.spinner("SynapseAI is processing..."):
try:
final_state = st.session_state.agent.invoke_turn(current_state)
st.session_state.messages = final_state.get('messages', [])
st.session_state.summary = final_state.get('summary')
except Exception as e:
logger.exception("Error during agent.invoke_turn")
st.error(f"Error: {e}")
st.session_state.messages.append(AIMessage(content=f"Error processing request: {e}"))
st.rerun()
# Disclaimer
st.markdown("---")
st.warning("**Disclaimer:** SynapseAI is for demonstration only and not for clinical use.")
if __name__ == "__main__":
main()