File size: 13,101 Bytes
788074d b34efbf 9cecafe b34efbf 9cecafe a3ddee2 9cecafe 4b23857 b731976 9cecafe b731976 a3ddee2 b731976 b34efbf 71db5de 9cecafe 99a7bc0 9988477 b731976 99a7bc0 fb3e96c 99a7bc0 bb53fca 9cecafe a3ddee2 9cecafe a3ddee2 9cecafe a3ddee2 9cecafe 6b6515d 9cecafe 4258926 b731976 9cecafe b731976 9cecafe 6b6515d 9cecafe 4258926 9cecafe b731976 9cecafe 99a7bc0 b731976 9988477 9cecafe 4258926 9988477 4258926 9cecafe 4258926 6b2d9f7 9cecafe a3ddee2 9cecafe a3ddee2 9cecafe 4b23857 9cecafe a3ddee2 9cecafe 4b23857 99a7bc0 4258926 9cecafe b731976 9cecafe b731976 31ea2bf 9cecafe b731976 9cecafe a3ddee2 9cecafe 71db5de 31ea2bf 9988477 9cecafe b564942 a3ddee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import streamlit as st
import json
import re
import os
import traceback
import logging
from dotenv import load_dotenv
# Configure logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
# Import agent logic and message types
try:
from agent import ClinicalAgent, AgentState, check_red_flags
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
except ImportError as e:
logger.exception("Failed to import from agent.py")
st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.")
st.stop()
# --- Environment Variable Loading & Validation ---
load_dotenv()
required_keys = ["UMLS_API_KEY", "GROQ_API_KEY", "TAVILY_API_KEY"]
missing = [key for key in required_keys if not os.getenv(key)]
if missing:
st.error(f"Missing required API Key(s): {', '.join(missing)}. Please set them in environment variables.")
st.stop()
# --- App Configuration ---
class ClinicalAppSettings:
APP_TITLE = "SynapseAI"
PAGE_LAYOUT = "wide"
MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)"
# Cache the agent to avoid re-initialization on each rerun
@st.cache_resource
def get_agent():
try:
return ClinicalAgent()
except Exception as e:
logger.exception("Failed to initialize ClinicalAgent")
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
st.stop()
# Sidebar patient intake helper
def load_patient_intake():
st.header("π Patient Intake Form")
# Demographics
age = st.number_input("Age", min_value=0, max_value=120, value=55, key="sb_age")
sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
# HPI
chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc")
hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi")
symptoms = st.multiselect(
"Symptoms",
["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"],
default=["Nausea", "Diaphoresis"],
key="sb_sym"
)
# History
pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh")
psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
# Meds & Allergies
current_meds_str = st.text_area(
"Current Meds",
"Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily",
key="sb_meds"
)
allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
# Social/Family
social_history = st.text_area("SH", "Smoker", key="sb_sh")
family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
# Vitals & Exam
col1, col2 = st.columns(2)
with col1:
temp_c = st.number_input("Temp C", min_value=35.0, max_value=42.0, value=36.8, format="%.1f", key="sb_temp")
hr_bpm = st.number_input("HR", min_value=30, max_value=250, value=95, key="sb_hr")
rr_rpm = st.number_input("RR", min_value=5, max_value=50, value=18, key="sb_rr")
with col2:
bp_mmhg = st.text_input("BP", "155/90", key="sb_bp")
spo2_percent = st.number_input("SpO2", min_value=70, max_value=100, value=96, key="sb_spo2")
pain_scale = st.slider("Pain", min_value=0, max_value=10, value=8, key="sb_pain")
# Updated minimum height to 68px to satisfy Streamlit requirement
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=68, key="sb_exam")
# Process meds and allergies with comprehensions
current_meds_list = [m.strip() for m in current_meds_str.splitlines() if m.strip()]
current_med_names_only = [
m.group(1).lower()
for med in current_meds_list
if (m := re.match(r"^\s*([A-Za-z-]+)", med))
]
allergies_list = [
(m.group(1).strip().lower() if (m := re.match(r"^\s*([A-Za-z\s/-]+)", a.strip())) else a.strip().lower())
for a in allergies_str.split(",")
if a.strip()
]
# Parse blood pressure
bp_sys, bp_dia = None, None
if "/" in bp_mmhg:
try:
bp_sys, bp_dia = map(int, bp_mmhg.split("/"))
except ValueError:
logger.warning(f"Unable to parse BP '{bp_mmhg}'")
return {
"demographics": {"age": age, "sex": sex},
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
"pmh": {"conditions": pmh},
"psh": {"procedures": psh},
"medications": {"current": current_meds_list, "names_only": current_med_names_only},
"allergies": allergies_list,
"social_history": {"details": social_history},
"family_history": {"details": family_history},
"vitals": {
"temp_c": temp_c,
"hr_bpm": hr_bpm,
"bp_mmhg": bp_mmhg,
"bp_sys": bp_sys,
"bp_dia": bp_dia,
"rr_rpm": rr_rpm,
"spo2_percent": spo2_percent,
"pain_scale": pain_scale
},
"exam_findings": {"notes": exam_notes},
}
# Main application
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "patient_data" not in st.session_state:
st.session_state.patient_data = None
if "summary" not in st.session_state:
st.session_state.summary = None
if "agent" not in st.session_state:
st.session_state.agent = get_agent()
# Sidebar intake
with st.sidebar:
patient_data = load_patient_intake()
if st.button("Start/Update Consultation", key="sb_start"):
st.session_state.patient_data = patient_data
red_flags = check_red_flags(patient_data)
st.sidebar.markdown("---")
if red_flags:
st.sidebar.warning("**Initial Red Flags:**")
for flag in red_flags:
st.sidebar.warning(f"- {flag.replace('Red Flag: ', '')}")
else:
st.sidebar.success("No immediate red flags.")
st.session_state.messages = [HumanMessage(content="Initiate consultation. Review patient data and begin analysis.")]
st.session_state.summary = None
st.success("Patient data loaded/updated.")
st.rerun()
# Chat area
st.header("π¬ Clinical Consultation")
for msg in st.session_state.messages:
if isinstance(msg, HumanMessage):
with st.chat_message("user"):
st.markdown(msg.content)
elif isinstance(msg, AIMessage):
with st.chat_message("assistant"):
ai_content = msg.content
structured_output = None
try:
match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
if match:
payload = match.group(1)
structured_output = json.loads(payload)
prefix = ai_content[:match.start()].strip()
suffix = ai_content[match.end():].strip()
if prefix:
st.markdown(prefix)
if suffix:
st.markdown(suffix)
else:
st.markdown(ai_content)
except (AttributeError, json.JSONDecodeError) as e:
logger.warning(f"JSON parse error: {e}")
st.markdown(ai_content)
if structured_output and isinstance(structured_output, dict):
st.divider()
# Display structured JSON sections
cols = st.columns(2)
with cols[0]:
st.markdown("**Assessment:**")
st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
st.markdown("**Differential Diagnosis:**")
ddx = structured_output.get('differential_diagnosis', [])
if ddx:
for item in ddx:
likelihood = item.get('likelihood', 'Low')
icon = 'π₯' if likelihood == 'High' else ('π₯' if likelihood == 'Medium' else 'π₯')
with st.expander(f"{icon} {item.get('diagnosis', 'Unknown')} ({likelihood})"):
st.write(f"**Rationale:** {item.get('rationale', 'N/A')}")
else:
st.info("No DDx provided.")
st.markdown("**Risk Assessment:**")
risk = structured_output.get('risk_assessment', {})
for key, style in [('identified_red_flags', st.warning), ('immediate_concerns', st.warning), ('potential_complications', st.info)]:
items = risk.get(key, [])
if items:
style(f"**{key.replace('_', ' ').capitalize()}:** {', '.join(items)}")
if not any(risk.get(k) for k in ['identified_red_flags', 'immediate_concerns', 'potential_complications']):
st.success("No specific risks highlighted.")
with cols[1]:
st.markdown("**Recommended Plan:**")
plan = structured_output.get('recommended_plan', {})
for section in ["investigations","therapeutics","consultations","patient_education"]:
st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
items = plan.get(section)
if isinstance(items, list):
for it in items:
st.markdown(f"- {it}")
elif items:
st.markdown(f"- {items}")
else:
st.markdown("_None_")
st.markdown("**Rationale & Guideline Check:**")
st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
if interaction := structured_output.get('interaction_check_summary'):
st.markdown("**Interaction Check Summary:**")
st.markdown(f"> {interaction}")
st.divider()
elif isinstance(msg, ToolMessage):
tool_name = getattr(msg, 'name', 'tool_execution')
with st.chat_message(tool_name, avatar="π οΈ"):
try:
data = json.loads(msg.content)
status = data.get('status', 'info')
message = data.get('message', msg.content)
if tool_name == "flag_risk" and status == "flagged":
st.error(f"π¨ **RISK FLAGGED:** {message}")
elif status in ("success", "clear"):
st.success(message)
elif status == "warning":
st.warning(message)
else:
st.error(message)
if details := data.get('details'):
st.caption(f"Details: {details}")
except json.JSONDecodeError:
st.info(msg.content)
# --- Chat Input ---
if prompt := st.chat_input("Your message or follow-up query..."):
if not st.session_state.patient_data:
st.warning("Please load patient data first.")
st.stop()
user_msg = HumanMessage(content=prompt)
st.session_state.messages.append(user_msg)
with st.chat_message("user"):
st.markdown(prompt)
current_state = {
"messages": st.session_state.messages,
"patient_data": st.session_state.patient_data,
"summary": st.session_state.summary,
"interaction_warnings": None
}
with st.spinner("SynapseAI is processing..."):
try:
final_state = st.session_state.agent.invoke_turn(current_state)
st.session_state.messages = final_state.get('messages', [])
st.session_state.summary = final_state.get('summary')
except Exception as e:
logger.exception("Error during agent.invoke_turn")
st.error(f"Error: {e}")
st.session_state.messages.append(AIMessage(content=f"Error processing request: {e}"))
st.rerun()
# Disclaimer
st.markdown("---")
st.warning("**Disclaimer:** SynapseAI is for demonstration only and not for clinical use.")
if __name__ == "__main__":
main()
|