mgbam commited on
Commit
e7e593a
·
verified ·
1 Parent(s): f1cd1c6

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +281 -269
agent.py CHANGED
@@ -1,296 +1,308 @@
1
- # agent.py
2
- import requests
3
  import json
4
  import re
5
  import os
6
- import operator
7
  import traceback
8
- from functools import lru_cache
9
 
10
- from langchain_groq import ChatGroq
11
- from langchain_community.tools.tavily_search import TavilySearchResults
12
- from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
13
- from langchain_core.pydantic_v1 import BaseModel, Field
14
- from langchain_core.tools import tool
15
- from langgraph.prebuilt import ToolExecutor
16
- from langgraph.graph import StateGraph, END
17
 
18
- from typing import Optional, List, Dict, Any, TypedDict, Annotated
19
-
20
- # --- Environment Variable Loading ---
21
  UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
22
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
23
  TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
- # --- Configuration & Constants ---
26
- AGENT_MODEL_NAME = "llama3-70b-8192"
27
- AGENT_TEMPERATURE = 0.1
28
- MAX_SEARCH_RESULTS = 3
29
 
30
- class ClinicalPrompts:
31
- SYSTEM_PROMPT = """
32
- You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT OMITTED FOR BREVITY]
33
- """
 
 
 
34
 
35
- # --- API Constants & Helper Functions ---
36
- # ... (Keep get_rxcui, get_openfda_label, search_text_list implementations) ...
37
- UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"; RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"; OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
38
- @lru_cache(maxsize=256)
39
- def get_rxcui(drug_name: str) -> Optional[str]:
40
- if not drug_name or not isinstance(drug_name, str): return None; drug_name = drug_name.strip();
41
- if not drug_name: return None; print(f"RxNorm Lookup for: '{drug_name}'");
42
- try:
43
- params = {"name": drug_name, "search": 1}; response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
44
- if data and "idGroup" in data and "rxnormId" in data["idGroup"]: rxcui = data["idGroup"]["rxnormId"][0]; print(f" Found RxCUI: {rxcui} for '{drug_name}'"); return rxcui
45
- else:
46
- params = {"name": drug_name}; response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
47
- if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
48
- for group in data["drugGroup"]["conceptGroup"]:
49
- if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
50
- if "conceptProperties" in group and group["conceptProperties"]: rxcui = group["conceptProperties"][0].get("rxcui");
51
- if rxcui: print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'"); return rxcui
52
- print(f" RxCUI not found for '{drug_name}'."); return None
53
- except requests.exceptions.RequestException as e: print(f" Error fetching RxCUI for '{drug_name}': {e}"); return None
54
- except json.JSONDecodeError as e: print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}"); return None
55
- except Exception as e: print(f" Unexpected error in get_rxcui for '{drug_name}': {e}"); return None
56
- @lru_cache(maxsize=128)
57
- def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
58
- if not rxcui and not drug_name: return None; print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}"); search_terms = []
59
- if rxcui: search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
60
- if drug_name: search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
61
- search_query = " OR ".join(search_terms); params = {"search": search_query, "limit": 1};
62
- try:
63
- response = requests.get(OPENFDA_API_BASE, params=params, timeout=15); response.raise_for_status(); data = response.json();
64
- if data and "results" in data and data["results"]: print(f" Found OpenFDA label for query: {search_query}"); return data["results"][0]
65
- print(f" No OpenFDA label found for query: {search_query}"); return None
66
- except requests.exceptions.RequestException as e: print(f" Error fetching OpenFDA label: {e}"); return None
67
- except json.JSONDecodeError as e: print(f" Error decoding OpenFDA JSON response: {e}"); return None
68
- except Exception as e: print(f" Unexpected error in get_openfda_label: {e}"); return None
69
- def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
70
- found_snippets = [];
71
- if not text_list or not search_terms: return found_snippets; search_terms_lower = [str(term).lower() for term in search_terms if term];
72
- for text_item in text_list:
73
- if not isinstance(text_item, str): continue; text_item_lower = text_item.lower();
74
- for term in search_terms_lower:
75
- if term in text_item_lower:
76
- start_index = text_item_lower.find(term); snippet_start = max(0, start_index - 50); snippet_end = min(len(text_item), start_index + len(term) + 100); snippet = text_item[snippet_start:snippet_end];
77
- snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, count=1, flags=re.IGNORECASE) # Highlight match
78
- found_snippets.append(f"...{snippet}...")
79
- break # Only report first match per text item
80
- return found_snippets
81
 
82
- # --- Clinical Helper Functions ---
83
- def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
84
- if not isinstance(bp_string, str): return None; match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip());
85
- if match: return int(match.group(1)), int(match.group(2)); return None
 
 
 
 
 
 
 
86
 
87
- # CORRECTED check_red_flags function (again)
88
- def check_red_flags(patient_data: dict) -> List[str]:
89
- """Checks patient data against predefined red flags."""
90
- flags = []
91
- if not patient_data: return flags
92
- symptoms = patient_data.get("hpi", {}).get("symptoms", [])
93
- vitals = patient_data.get("vitals", {})
94
- history = patient_data.get("pmh", {}).get("conditions", "")
95
- symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]
96
 
97
- # Symptom Flags (Separate lines)
98
- if "chest pain" in symptoms_lower: flags.append("Red Flag: Chest Pain reported.")
99
- if "shortness of breath" in symptoms_lower: flags.append("Red Flag: Shortness of Breath reported.")
100
- if "severe headache" in symptoms_lower: flags.append("Red Flag: Severe Headache reported.")
101
- if "sudden vision loss" in symptoms_lower: flags.append("Red Flag: Sudden Vision Loss reported.")
102
- if "weakness on one side" in symptoms_lower: flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
103
- if "hemoptysis" in symptoms_lower: flags.append("Red Flag: Hemoptysis (coughing up blood).")
104
- if "syncope" in symptoms_lower: flags.append("Red Flag: Syncope (fainting).")
105
 
106
- # Vital Sign Flags
107
- if vitals:
108
- temp = vitals.get("temp_c"); hr = vitals.get("hr_bpm"); rr = vitals.get("rr_rpm")
109
- spo2 = vitals.get("spo2_percent"); bp_str = vitals.get("bp_mmhg")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
- # CORRECTED Vital Sign Checks - Separate Lines
112
- if temp is not None and temp >= 38.5:
113
- flags.append(f"Red Flag: Fever ({temp}°C).")
114
- if hr is not None and hr >= 120:
115
- flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
116
- if hr is not None and hr <= 50:
117
- flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
118
- if rr is not None and rr >= 24:
119
- flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
120
- if spo2 is not None and spo2 <= 92:
121
- flags.append(f"Red Flag: Hypoxia ({spo2}%).")
122
- if bp_str:
123
- bp = parse_bp(bp_str)
124
- if bp:
125
- if bp[0] >= 180 or bp[1] >= 110:
126
- flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
127
- if bp[0] <= 90 or bp[1] <= 60:
128
- flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
129
 
130
- # History Flags
131
- if history and isinstance(history, str):
132
- history_lower = history.lower()
133
- if "history of mi" in history_lower and "chest pain" in symptoms_lower:
134
- flags.append("Red Flag: History of MI with current Chest Pain.")
135
- if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower:
136
- flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
137
 
138
- return list(set(flags)) # Unique flags
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
- def format_patient_data_for_prompt(data: dict) -> str:
142
- # ... (Keep Corrected Implementation) ...
143
- if not data: return "No patient data provided."; prompt_str = "";
144
- for key, value in data.items(): section_title = key.replace('_', ' ').title();
145
- if isinstance(value, dict) and value: has_content = any(sub_value for sub_value in value.values());
146
- if has_content: prompt_str += f"**{section_title}:**\n";
147
- for sub_key, sub_value in value.items():
148
- if sub_value: prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
149
- elif isinstance(value, list) and value: prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
150
- elif value and not isinstance(value, dict): prompt_str += f"**{section_title}:** {value}\n";
151
- return prompt_str.strip()
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
 
 
 
 
 
153
 
154
- # --- Tool Definitions ---
155
- # ... (Keep Pydantic Models and Tool Function implementations as before) ...
156
- class LabOrderInput(BaseModel): test_name: str = Field(...); reason: str = Field(...); priority: str = Field("Routine")
157
- class PrescriptionInput(BaseModel): medication_name: str = Field(...); dosage: str = Field(...); route: str = Field(...); frequency: str = Field(...); duration: str = Field("As directed"); reason: str = Field(...)
158
- class InteractionCheckInput(BaseModel): potential_prescription: str = Field(...); current_medications: Optional[List[str]] = Field(None); allergies: Optional[List[str]] = Field(None)
159
- class FlagRiskInput(BaseModel): risk_description: str = Field(...); urgency: str = Field("High")
 
160
 
161
- @tool("order_lab_test", args_schema=LabOrderInput)
162
- def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
163
- print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}"); return json.dumps({"status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}"})
164
- @tool("prescribe_medication", args_schema=PrescriptionInput)
165
- def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
166
- print(f"Executing prescribe_medication: {medication_name} {dosage}..."); return json.dumps({"status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}"})
167
- @tool("check_drug_interactions", args_schema=InteractionCheckInput)
168
- def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
169
- print(f"\n--- Executing REAL check_drug_interactions ---"); print(f"Checking potential prescription: '{potential_prescription}'"); warnings = []; potential_med_lower = potential_prescription.lower().strip();
170
- current_meds_list = current_medications or []; allergies_list = allergies or []; current_med_names_lower = [];
171
- for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", str(med));
172
- if match: current_med_names_lower.append(match.group(1).lower());
173
- allergies_lower = [str(a).lower().strip() for a in allergies_list if a]; print(f" Against Current Meds (names): {current_med_names_lower}"); print(f" Against Allergies: {allergies_lower}");
174
- print(f" Step 1: Normalizing '{potential_prescription}'..."); potential_rxcui = get_rxcui(potential_prescription); potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription);
175
- if not potential_rxcui and not potential_label: warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.");
176
- print(" Step 2: Performing Allergy Check...");
177
- for allergy in allergies_lower:
178
- if allergy == potential_med_lower: warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.");
179
- elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.");
180
- elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.");
181
- elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.");
182
- if potential_label: contraindications = potential_label.get("contraindications"); warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings");
183
- if contraindications: allergy_mentions_ci = search_text_list(contraindications, allergies_lower);
184
- if allergy_mentions_ci: warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}");
185
- if warnings_section: allergy_mentions_warn = search_text_list(warnings_section, allergies_lower);
186
- if allergy_mentions_warn: warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}");
187
- print(" Step 3: Performing Drug-Drug Interaction Check...");
188
- if potential_rxcui or potential_label:
189
- for current_med_name in current_med_names_lower:
190
- if not current_med_name or current_med_name == potential_med_lower: continue; print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'..."); current_rxcui = get_rxcui(current_med_name); current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name); search_terms_for_current = [current_med_name];
191
- if current_rxcui: search_terms_for_current.append(current_rxcui); search_terms_for_potential = [potential_med_lower];
192
- if potential_rxcui: search_terms_for_potential.append(potential_rxcui); interaction_found_flag = False;
193
- if potential_label and potential_label.get("drug_interactions"): interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current);
194
- if interaction_mentions: warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}"); interaction_found_flag = True;
195
- if current_label and current_label.get("drug_interactions") and not interaction_found_flag: interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential);
196
- if interaction_mentions: warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}");
197
- else: warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.");
198
- final_warnings = list(set(warnings)); status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear";
199
- if not final_warnings: status = "clear"; message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."; print(f"--- Interaction Check Complete ---");
200
- return json.dumps({"status": status, "message": message, "warnings": final_warnings})
201
- @tool("flag_risk", args_schema=FlagRiskInput)
202
- def flag_risk(risk_description: str, urgency: str) -> str:
203
- print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}"); return json.dumps({"status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency."})
204
- search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
205
- all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
206
 
207
- # --- LangGraph State & Nodes ---
208
- class AgentState(TypedDict): messages: Annotated[list[Any], operator.add]; patient_data: Optional[dict]; summary: Optional[str]; interaction_warnings: Optional[List[str]]
209
- llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME); model_with_tools = llm.bind_tools(all_tools); tool_executor = ToolExecutor(all_tools)
210
- def agent_node(state: AgentState):
211
- # ... (Keep implementation) ...
212
- print("\n---AGENT NODE---"); current_messages = state['messages'];
213
- if not current_messages or not isinstance(current_messages[0], SystemMessage): print("Prepending System Prompt."); current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages;
214
- print(f"Invoking LLM with {len(current_messages)} messages.");
215
- try: response = model_with_tools.invoke(current_messages); print(f"Agent Raw Response Type: {type(response)}");
216
- if hasattr(response, 'tool_calls') and response.tool_calls: print(f"Agent Response Tool Calls: {response.tool_calls}"); else: print("Agent Response: No tool calls.");
217
- except Exception as e: print(f"ERROR in agent_node: {e}"); traceback.print_exc(); error_message = AIMessage(content=f"Error: {e}"); return {"messages": [error_message]};
218
- return {"messages": [response]}
219
- def tool_node(state: AgentState):
220
- # ... (Keep implementation) ...
221
- print("\n---TOOL NODE---"); tool_messages = []; last_message = state['messages'][-1]; interaction_warnings_found = [];
222
- if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None): print("Warning: Tool node called unexpectedly."); return {"messages": [], "interaction_warnings": None};
223
- tool_calls = last_message.tool_calls; print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}"); prescriptions_requested = {}; interaction_checks_requested = {};
224
- for call in tool_calls: tool_name = call.get('name'); tool_args = call.get('args', {});
225
- if tool_name == 'prescribe_medication': med_name = tool_args.get('medication_name', '').lower();
226
- if med_name: prescriptions_requested[med_name] = call;
227
- elif tool_name == 'check_drug_interactions': potential_med = tool_args.get('potential_prescription', '').lower();
228
- if potential_med: interaction_checks_requested[potential_med] = call;
229
- valid_tool_calls_for_execution = []; blocked_ids = set();
230
- for med_name, prescribe_call in prescriptions_requested.items():
231
- if med_name not in interaction_checks_requested: print(f"**SAFETY VIOLATION (Agent): Prescribe '{med_name}' blocked - no interaction check requested.**"); error_msg = ToolMessage(content=json.dumps({"status": "error", "message": f"Interaction check needed for '{med_name}'."}), tool_call_id=prescribe_call['id'], name=prescribe_call['name']); tool_messages.append(error_msg); blocked_ids.add(prescribe_call['id']);
232
- valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids];
233
- patient_data = state.get("patient_data", {}); patient_meds_full = patient_data.get("medications", {}).get("current", []); patient_allergies = patient_data.get("allergies", []);
234
- for call in valid_tool_calls_for_execution:
235
- if call['name'] == 'check_drug_interactions':
236
- if 'args' not in call: call['args'] = {}; call['args']['current_medications'] = patient_meds_full; call['args']['allergies'] = patient_allergies; print(f"Augmented interaction check args for call ID {call['id']}");
237
- if valid_tool_calls_for_execution: print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}");
238
- try: responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True);
239
- for call, resp in zip(valid_tool_calls_for_execution, responses): tool_call_id = call['id']; tool_name = call['name'];
240
- if isinstance(resp, Exception): error_type = type(resp).__name__; error_str = str(resp); print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}"); traceback.print_exc(); error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"}); tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name));
241
- if isinstance(resp, AttributeError) and "'dict' object has no attribute 'tool'" in error_str: print("\n *** DETECTED SPECIFIC ATTRIBUTE ERROR *** \n");
242
- else:
243
- print(f"Tool '{tool_name}' executed."); content_str = str(resp); tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name));
244
- if tool_name == "check_drug_interactions": # Extract warnings
245
- try: result_data = json.loads(content_str);
246
- if result_data.get("status") == "warning" and result_data.get("warnings"): print(f" Interaction check returned warnings: {result_data['warnings']}"); interaction_warnings_found.extend(result_data["warnings"]);
247
- except Exception as e: print(f" Error processing interaction check result: {e}");
248
- except Exception as e: # Outer exception handling...
249
- print(f"CRITICAL TOOL NODE ERROR: {e}"); traceback.print_exc(); error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"}); processed_ids = {msg.tool_call_id for msg in tool_messages}; [tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name'])) for call in valid_tool_calls_for_execution if call['id'] not in processed_ids];
250
- print(f"Returning {len(tool_messages)} tool messages. Warnings: {bool(interaction_warnings_found)}")
251
- return {"messages": tool_messages, "interaction_warnings": interaction_warnings_found or None} # Return messages AND warnings
252
- def reflection_node(state: AgentState):
253
- # ... (Keep implementation) ...
254
- print("\n---REFLECTION NODE---")
255
- interaction_warnings = state.get("interaction_warnings")
256
- if not interaction_warnings: print("Warning: Reflection node called without warnings."); return {"messages": [], "interaction_warnings": None};
257
- print(f"Reviewing interaction warnings: {interaction_warnings}"); triggering_ai_message = None; relevant_tool_call_ids = set();
258
- for msg in reversed(state['messages']):
259
- if isinstance(msg, ToolMessage) and msg.name == "check_drug_interactions": relevant_tool_call_ids.add(msg.tool_call_id);
260
- if isinstance(msg, AIMessage) and msg.tool_calls:
261
- if any(tc['id'] in relevant_tool_call_ids for tc in msg.tool_calls): triggering_ai_message = msg; break;
262
- if not triggering_ai_message: print("Error: Could not find triggering AI message for reflection."); return {"messages": [AIMessage(content="Internal Error: Reflection context missing.")], "interaction_warnings": None};
263
- original_plan_proposal_context = triggering_ai_message.content;
264
- reflection_prompt_text = f"""You are SynapseAI, performing a critical safety review... [PROMPT OMITTED FOR BREVITY]""" # Use full prompt
265
- reflection_messages = [SystemMessage(content="Perform focused safety review based on interaction warnings."), HumanMessage(content=reflection_prompt_text)];
266
- print("Invoking LLM for reflection...");
267
- try: reflection_response = llm.invoke(reflection_messages); print(f"Reflection Response: {reflection_response.content}"); final_ai_message = AIMessage(content=reflection_response.content);
268
- except Exception as e: print(f"ERROR during reflection: {e}"); traceback.print_exc(); final_ai_message = AIMessage(content=f"Error during safety reflection: {e}");
269
- return {"messages": [final_ai_message], "interaction_warnings": None} # Return reflection response, clear warnings
270
 
271
- # --- Graph Routing Logic ---
272
- def should_continue(state: AgentState) -> str:
273
- # ... (Keep implementation) ...
274
- print("\n---ROUTING DECISION (Agent Output)---"); last_message = state['messages'][-1] if state['messages'] else None;
275
- if not isinstance(last_message, AIMessage): return "end_conversation_turn";
276
- if "Sorry, an internal error occurred" in last_message.content: return "end_conversation_turn";
277
- if getattr(last_message, 'tool_calls', None): return "continue_tools"; else: return "end_conversation_turn";
278
- def after_tools_router(state: AgentState) -> str:
279
- # ... (Keep implementation) ...
280
- print("\n---ROUTING DECISION (After Tools)---");
281
- if state.get("interaction_warnings"): print("Routing: Warnings found -> Reflection"); return "reflect_on_warnings";
282
- else: print("Routing: No warnings -> Agent"); return "continue_to_agent";
283
 
284
- # --- ClinicalAgent Class ---
285
- class ClinicalAgent:
286
- def __init__(self):
287
- # ... (Keep graph compilation) ...
288
- workflow = StateGraph(AgentState); workflow.add_node("agent", agent_node); workflow.add_node("tools", tool_node); workflow.add_node("reflection", reflection_node)
289
- workflow.set_entry_point("agent"); workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
290
- workflow.add_conditional_edges("tools", after_tools_router, {"reflect_on_warnings": "reflection", "continue_to_agent": "agent"})
291
- workflow.add_edge("reflection", "agent"); self.graph_app = workflow.compile(); print("ClinicalAgent initialized and LangGraph compiled.")
292
- def invoke_turn(self, state: Dict) -> Dict:
293
- # ... (Keep implementation) ...
294
- print(f"Invoking graph with state keys: {state.keys()}");
295
- try: final_state = self.graph_app.invoke(state, {"recursion_limit": 15}); final_state.setdefault('summary', state.get('summary')); final_state.setdefault('interaction_warnings', None); return final_state
296
- except Exception as e: print(f"CRITICAL ERROR during graph invocation: {type(e).__name__} - {e}"); traceback.print_exc(); error_msg = AIMessage(content=f"Sorry, error occurred: {e}"); return {"messages": state.get('messages', []) + [error_msg], "patient_data": state.get('patient_data'), "summary": state.get('summary'), "interaction_warnings": None}
 
1
+ # app.py
2
+ import streamlit as st
3
  import json
4
  import re
5
  import os
 
6
  import traceback
7
+ from dotenv import load_dotenv
8
 
9
+ # Import agent logic and message types from agent.py
10
+ try:
11
+ from agent import ClinicalAgent, AgentState, check_red_flags
12
+ from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
13
+ except ImportError as e:
14
+ st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.")
15
+ st.stop()
16
 
17
+ # --- Environment Variable Loading & Validation ---
18
+ load_dotenv()
19
+ # Check keys required by agent.py are present before initializing the agent
20
  UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
21
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
22
  TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
23
+ missing_keys = []
24
+ if not UMLS_API_KEY: missing_keys.append("UMLS_API_KEY")
25
+ if not GROQ_API_KEY: missing_keys.append("GROQ_API_KEY")
26
+ if not TAVILY_API_KEY: missing_keys.append("TAVILY_API_KEY")
27
+ if missing_keys:
28
+ st.error(f"Missing required API Key(s): {', '.join(missing_keys)}. Please set them in Hugging Face Space Secrets or environment variables.")
29
+ st.stop()
30
+
31
+ # --- App Configuration ---
32
+ class ClinicalAppSettings:
33
+ APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
34
+ PAGE_LAYOUT = "wide"
35
+ MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)" # Defined in agent.py
36
+
37
+ # --- Streamlit UI ---
38
+ def main():
39
+ st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
40
+ st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
41
+ st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}")
42
+
43
+ # Initialize session state
44
+ if "messages" not in st.session_state:
45
+ st.session_state.messages = []
46
+ if "patient_data" not in st.session_state:
47
+ st.session_state.patient_data = None
48
+ if "summary" not in st.session_state:
49
+ st.session_state.summary = None
50
+
51
+ # Initialize the agent instance only once
52
+ if "agent" not in st.session_state:
53
+ try:
54
+ st.session_state.agent = ClinicalAgent()
55
+ print("ClinicalAgent successfully initialized in Streamlit session state.")
56
+ except Exception as e:
57
+ st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
58
+ print(f"ERROR Initializing ClinicalAgent: {e}")
59
+ traceback.print_exc()
60
+ st.stop()
61
+
62
+ # --- Patient Data Input Sidebar ---
63
+ with st.sidebar:
64
+ st.header("📄 Patient Intake Form")
65
+ # Input fields... (Using shorter versions for brevity, assume full fields are here)
66
+ st.subheader("Demographics")
67
+ age = st.number_input("Age", 0, 120, 55, key="sb_age")
68
+ sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
69
+
70
+ st.subheader("HPI")
71
+ chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc")
72
+ hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi")
73
+ symptoms = st.multiselect(
74
+ "Symptoms",
75
+ ["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"],
76
+ default=["Nausea", "Diaphoresis"],
77
+ key="sb_sym"
78
+ )
79
 
80
+ st.subheader("History")
81
+ pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh")
82
+ psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
 
83
 
84
+ st.subheader("Meds & Allergies")
85
+ current_meds_str = st.text_area(
86
+ "Current Meds",
87
+ "Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily",
88
+ key="sb_meds"
89
+ )
90
+ allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
91
 
92
+ st.subheader("Social/Family")
93
+ social_history = st.text_area("SH", "Smoker", key="sb_sh")
94
+ family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
+ st.subheader("Vitals & Exam")
97
+ col1, col2 = st.columns(2)
98
+ with col1:
99
+ temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp")
100
+ hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr")
101
+ rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
102
+ with col2:
103
+ bp_mmhg = st.text_input("BP", "155/90", key="sb_bp")
104
+ spo2_percent = st.number_input("SpO2", 70, 100, 96, key="sb_spo2")
105
+ pain_scale = st.slider("Pain", 0, 10, 8, key="sb_pain")
106
+ exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=68, key="sb_exam")
107
 
108
+ if st.button("Start/Update Consultation", key="sb_start"):
109
+ # Compile data...
110
+ current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
111
+ current_med_names_only = []
112
+ for med in current_meds_list:
113
+ match = re.match(r"^\s*([a-zA-Z\-]+)", med)
114
+ if match:
115
+ current_med_names_only.append(match.group(1).lower())
 
116
 
117
+ allergies_list = []
118
+ for a in allergies_str.split(','):
119
+ cleaned_allergy = a.strip()
120
+ if cleaned_allergy:
121
+ match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy)
122
+ name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower()
123
+ allergies_list.append(name_part)
 
124
 
125
+ # Update patient data in session state
126
+ st.session_state.patient_data = {
127
+ "demographics": {"age": age, "sex": sex},
128
+ "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
129
+ "pmh": {"conditions": pmh},
130
+ "psh": {"procedures": psh},
131
+ "medications": {"current": current_meds_list, "names_only": current_med_names_only},
132
+ "allergies": allergies_list,
133
+ "social_history": {"details": social_history},
134
+ "family_history": {"details": family_history},
135
+ "vitals": {
136
+ "temp_c": temp_c,
137
+ "hr_bpm": hr_bpm,
138
+ "bp_mmhg": bp_mmhg,
139
+ "rr_rpm": rr_rpm,
140
+ "spo2_percent": spo2_percent,
141
+ "pain_scale": pain_scale
142
+ },
143
+ "exam_findings": {"notes": exam_notes}
144
+ }
145
 
146
+ # Call check_red_flags from agent module
147
+ red_flags = check_red_flags(st.session_state.patient_data)
148
+ st.sidebar.markdown("---")
149
+ if red_flags:
150
+ st.sidebar.warning("**Initial Red Flags:**")
151
+ for flag in red_flags:
152
+ st.sidebar.warning(f"- {flag.replace('Red Flag: ', '')}")
153
+ else:
154
+ st.sidebar.success("No immediate red flags.")
 
 
 
 
 
 
 
 
 
155
 
156
+ # Reset conversation and summary on new intake
157
+ initial_prompt = "Initiate consultation. Review patient data and begin analysis."
158
+ st.session_state.messages = [HumanMessage(content=initial_prompt)]
159
+ st.session_state.summary = None # Reset summary
160
+ st.success("Patient data loaded/updated.")
161
+ # Rerun might be needed if the main area should clear or update based on new data
162
+ st.rerun()
163
 
164
+ # --- Main Chat Interface Area ---
165
+ st.header("💬 Clinical Consultation")
166
+ # Display loop
167
+ for msg in st.session_state.messages:
168
+ if isinstance(msg, HumanMessage):
169
+ with st.chat_message("user"):
170
+ st.markdown(msg.content)
171
+ elif isinstance(msg, AIMessage):
172
+ with st.chat_message("assistant"):
173
+ ai_content = msg.content
174
+ structured_output = None
175
+ try:
176
+ # JSON Parsing logic...
177
+ json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
178
+ if json_match:
179
+ json_str = json_match.group(1)
180
+ prefix = ai_content[:json_match.start()].strip()
181
+ suffix = ai_content[json_match.end():].strip()
182
+ if prefix:
183
+ st.markdown(prefix)
184
+ structured_output = json.loads(json_str)
185
+ if suffix:
186
+ st.markdown(suffix)
187
+ elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"):
188
+ structured_output = json.loads(ai_content)
189
+ ai_content = ""
190
+ else:
191
+ st.markdown(ai_content) # Display non-JSON content
192
+ except Exception as e:
193
+ st.markdown(ai_content)
194
+ print(f"Error parsing/displaying AI JSON: {e}")
195
 
196
+ if structured_output and isinstance(structured_output, dict):
197
+ # Structured JSON display logic...
198
+ st.divider()
199
+ st.subheader("📊 AI Analysis & Recommendations")
200
+ cols = st.columns(2)
201
+ with cols[0]:
202
+ st.markdown("**Assessment:**")
203
+ st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
204
+ st.markdown("**Differential Diagnosis:**")
205
+ ddx = structured_output.get('differential_diagnosis', [])
206
+ if ddx:
207
+ for item in ddx:
208
+ likelihood = item.get('likelihood', 'Low')
209
+ medal = ('🥇' if likelihood.startswith('H') else '🥈' if likelihood.startswith('M') else '🥉')
210
+ expander_title = f"{medal} {item.get('diagnosis', 'Unknown')} ({likelihood})"
211
+ with st.expander(expander_title):
212
+ st.write(f"**Rationale:** {item.get('rationale', 'N/A')}")
213
+ else:
214
+ st.info("No DDx provided.")
215
+ st.markdown("**Risk Assessment:**")
216
+ risk = structured_output.get('risk_assessment', {})
217
+ flags = risk.get('identified_red_flags', [])
218
+ concerns = risk.get('immediate_concerns', [])
219
+ comps = risk.get('potential_complications', [])
220
+ if flags:
221
+ st.warning(f"**Flags:** {', '.join(flags)}")
222
+ if concerns:
223
+ st.warning(f"**Concerns:** {', '.join(concerns)}")
224
+ if comps:
225
+ st.info(f"**Potential Complications:** {', '.join(comps)}")
226
+ if not flags and not concerns:
227
+ st.success("No major risks highlighted.")
228
+ with cols[1]:
229
+ st.markdown("**Recommended Plan:**")
230
+ plan = structured_output.get('recommended_plan', {})
231
+ for section in ["investigations","therapeutics","consultations","patient_education"]:
232
+ st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
233
+ items = plan.get(section)
234
+ if items and isinstance(items, list):
235
+ for it in items:
236
+ st.markdown(f"- {it}")
237
+ elif items:
238
+ st.markdown(f"- {items}")
239
+ else:
240
+ st.markdown("_None_")
241
+ st.markdown("")
242
+ st.markdown("**Rationale & Guideline Check:**")
243
+ st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
244
+ interaction_summary = structured_output.get('interaction_check_summary', "")
245
+ if interaction_summary:
246
+ st.markdown("**Interaction Check Summary:**")
247
+ st.markdown(f"> {interaction_summary}")
248
+ st.divider()
249
 
250
+ # Tool Call Display
251
+ if getattr(msg, 'tool_calls', None):
252
+ with st.expander("🛠️ AI requested actions", expanded=False):
253
+ if msg.tool_calls:
254
+ for tc in msg.tool_calls:
255
+ try:
256
+ st.code(
257
+ f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}",
258
+ language="json"
259
+ )
260
+ except Exception as display_e:
261
+ st.error(f"Could not display tool call args: {display_e}", icon="⚠️")
262
+ st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
263
+ else:
264
+ st.caption("_No actions requested._")
265
+
266
+ # --- Chat Input Logic ---
267
+ if prompt := st.chat_input("Your message or follow-up query..."):
268
+ if not st.session_state.patient_data:
269
+ st.warning("Please load patient data first.")
270
+ st.stop()
271
+ if 'agent' not in st.session_state or not st.session_state.agent:
272
+ st.error("Agent not initialized. Check logs.")
273
+ st.stop()
274
 
275
+ # Append user message and display immediately
276
+ user_message = HumanMessage(content=prompt)
277
+ st.session_state.messages.append(user_message)
278
+ with st.chat_message("user"):
279
+ st.markdown(prompt)
280
 
281
+ # Prepare state for the agent
282
+ current_state_dict = {
283
+ "messages": st.session_state.messages,
284
+ "patient_data": st.session_state.patient_data,
285
+ "summary": st.session_state.get("summary"),
286
+ "interaction_warnings": None # Start clean
287
+ }
288
 
289
+ # Invoke the agent's graph for one turn
290
+ with st.spinner("SynapseAI is processing..."):
291
+ try:
292
+ final_state = st.session_state.agent.invoke_turn(current_state_dict)
293
+ st.session_state.messages = final_state.get('messages', [])
294
+ st.session_state.summary = final_state.get('summary')
295
+ except Exception as e:
296
+ print(f"CRITICAL ERROR during agent invocation: {type(e).__name__} - {e}")
297
+ traceback.print_exc()
298
+ st.error(f"An error occurred during processing: {e}", icon="❌")
299
+ st.session_state.messages.append(AIMessage(content=f"Error during processing: {e}"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300
 
301
+ st.rerun()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
 
303
+ # Disclaimer
304
+ st.markdown("---")
305
+ st.warning("**Disclaimer:** SynapseAI is for demonstration...")
 
 
 
 
 
 
 
 
 
306
 
307
+ if __name__ == "__main__":
308
+ main()