mgbam commited on
Commit
f1cd1c6
·
verified ·
1 Parent(s): 5723e66

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +241 -548
agent.py CHANGED
@@ -1,10 +1,11 @@
1
- import os
2
- import re
3
  import json
 
 
 
4
  import traceback
5
- import requests
6
  from functools import lru_cache
7
- from typing import Any, Dict, List, Optional, TypedDict, Annotated
8
 
9
  from langchain_groq import ChatGroq
10
  from langchain_community.tools.tavily_search import TavilySearchResults
@@ -14,590 +15,282 @@ from langchain_core.tools import tool
14
  from langgraph.prebuilt import ToolExecutor
15
  from langgraph.graph import StateGraph, END
16
 
17
- # --- Environment Variables ---
 
 
18
  UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
19
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
20
  TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
21
 
22
- # --- Agent Configuration ---
23
  AGENT_MODEL_NAME = "llama3-70b-8192"
24
  AGENT_TEMPERATURE = 0.1
25
  MAX_SEARCH_RESULTS = 3
26
 
27
- # --- System Prompt Definition ---
28
  class ClinicalPrompts:
 
 
29
  """
30
- Comprehensive system prompt defining SynapseAI behavior.
31
- """
32
- SYSTEM_PROMPT = (
33
- """
34
- You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation.
35
- Your goal is to support healthcare professionals by analyzing patient data,
36
- providing differential diagnoses, suggesting evidence-based management plans,
37
- and identifying risks according to current standards of care.
38
-
39
- **Core Directives for this Conversation:**
40
- 1. **Analyze Sequentially:** Process information turn-by-turn. Base your responses on the *entire* conversation history.
41
- 2. **Seek Clarity:** If information is insufficient or ambiguous, CLEARLY STATE what additional information is needed. Do NOT guess.
42
- 3. **Structured Assessment (When Ready):** When sufficient information is available, provide a comprehensive assessment
43
- using the specified JSON structure. Output this JSON as the primary content.
44
- 4. **Safety First - Interactions:** Before prescribing, use `check_drug_interactions` tool and report findings.
45
- 5. **Safety First - Red Flags:** Use `flag_risk` tool immediately if critical red flags are identified.
46
- 6. **Tool Use:** Employ tools (`order_lab_test`, `prescribe_medication`, `check_drug_interactions`,
47
- `flag_risk`, `tavily_search_results`) logically within the flow.
48
- 7. **Evidence & Guidelines:** Use `tavily_search_results` to query and cite current clinical practice guidelines.
49
- 8. **Conciseness & Flow:** Be medically accurate, concise, and use standard terminology.
50
- """
51
- )
52
 
53
- # --- External API Endpoints ---
54
- RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"
55
- OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
56
-
57
- # --- API Helper Functions ---
58
  @lru_cache(maxsize=256)
59
  def get_rxcui(drug_name: str) -> Optional[str]:
60
- """
61
- Retrieve RxCUI for a given drug name via RxNorm API.
62
- """
63
- if not drug_name or not isinstance(drug_name, str):
64
- return None
65
-
66
- name = drug_name.strip()
67
- if not name:
68
- return None
69
-
70
  try:
71
- # Direct lookup
72
- params = {"name": name, "search": 1}
73
- res = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10)
74
- res.raise_for_status()
75
- data = res.json()
76
-
77
- ids = data.get("idGroup", {}).get("rxnormId")
78
- if ids:
79
- return ids[0]
80
-
81
- # Fallback to /drugs search
82
- params = {"name": name}
83
- res = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10)
84
- res.raise_for_status()
85
- data = res.json()
86
-
87
- for group in data.get("drugGroup", {}).get("conceptGroup", []):
88
- if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
89
- props = group.get("conceptProperties") or []
90
- if props:
91
- return props[0].get("rxcui")
92
-
93
- except Exception:
94
- pass
95
-
96
- return None
97
-
98
  @lru_cache(maxsize=128)
99
- def get_openfda_label(
100
- rxcui: Optional[str] = None,
101
- drug_name: Optional[str] = None
102
- ) -> Optional[dict]:
103
- """
104
- Fetch drug label info from OpenFDA using RxCUI or drug name.
105
- """
106
- if not (rxcui or drug_name):
107
- return None
108
-
109
- query_parts: List[str] = []
110
- if rxcui:
111
- query_parts.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
112
- if drug_name:
113
- name_lower = drug_name.lower()
114
- query_parts.append(
115
- f'(openfda.brand_name:"{name_lower}" OR openfda.generic_name:"{name_lower}")'
116
- )
117
-
118
- search_query = " OR ".join(query_parts)
119
- params = {"search": search_query, "limit": 1}
120
-
121
  try:
122
- res = requests.get(OPENFDA_API_BASE, params=params, timeout=15)
123
- res.raise_for_status()
124
- data = res.json()
125
- results = data.get("results") or []
126
- if results:
127
- return results[0]
128
- except Exception:
129
- pass
130
-
131
- return None
132
-
133
-
134
- def search_text_list(
135
- text_list: Optional[List[str]],
136
- search_terms: List[str]
137
- ) -> List[str]:
138
- """
139
- Case-insensitive search for terms in text_list; returns highlighted snippets.
140
- """
141
- snippets: List[str] = []
142
- if not text_list or not search_terms:
143
- return snippets
144
-
145
- lower_terms = [t.lower() for t in search_terms if t]
146
-
147
- for text in text_list:
148
- if not isinstance(text, str):
149
- continue
150
-
151
- text_lower = text.lower()
152
- for term in lower_terms:
153
- idx = text_lower.find(term)
154
- if idx != -1:
155
- start = max(0, idx - 50)
156
- end = min(len(text), idx + len(term) + 100)
157
- snippet = text[start:end]
158
- snippet = re.sub(
159
- f"({re.escape(term)})",
160
- r"**\1**",
161
- snippet,
162
- flags=re.IGNORECASE
163
- )
164
- snippets.append(f"...{snippet}...")
165
- break
166
-
167
- return snippets
168
 
169
  # --- Clinical Helper Functions ---
170
-
171
  def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
172
- """
173
- Parse a blood pressure string like '120/80' into (systolic, diastolic).
174
- """
175
- if not isinstance(bp_string, str):
176
- return None
177
-
178
- match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip())
179
- if match:
180
- return int(match.group(1)), int(match.group(2))
181
-
182
- return None
183
-
184
 
 
185
  def check_red_flags(patient_data: dict) -> List[str]:
186
- """
187
- Evaluate patient_data for predefined red flags; return unique list.
188
- """
189
- flags: List[str] = []
190
- if not patient_data:
191
- return flags
192
-
193
- symptoms = [s.lower() for s in patient_data.get("hpi", {}).get("symptoms", [])]
194
  vitals = patient_data.get("vitals", {})
195
- history = patient_data.get("pmh", {}).get("conditions", "").lower()
196
-
197
- # Symptom-based flags
198
- symptom_flags = {
199
- "chest pain": "Chest Pain reported",
200
- "shortness of breath": "Shortness of Breath reported",
201
- "severe headache": "Severe Headache reported",
202
- "sudden vision loss": "Sudden Vision Loss reported",
203
- "weakness on one side": "Unilateral Weakness reported (potential stroke)",
204
- "hemoptysis": "Hemoptysis (coughing up blood)",
205
- "syncope": "Syncope (fainting)"
206
- }
207
- for key, desc in symptom_flags.items():
208
- if key in symptoms:
209
- flags.append(f"Red Flag: {desc}.")
210
-
211
- # Vital sign flags
212
- temp = vitals.get("temp_c")
213
- hr = vitals.get("hr_bpm")
214
- rr = vitals.get("rr_rpm")
215
- spo2 = vitals.get("spo2_percent")
216
- bp_str = vitals.get("bp_mmhg")
217
-
218
- if temp is not None and temp >= 38.5:
219
- flags.append(f"Red Flag: Fever ({temp}°C).")
220
- if hr is not None:
221
- if hr >= 120:
222
  flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
223
- if hr <= 50:
224
  flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
225
- if rr is not None and rr >= 24:
226
- flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
227
- if spo2 is not None and spo2 <= 92:
228
- flags.append(f"Red Flag: Hypoxia ({spo2}%).")
229
-
230
- if bp_str:
231
- parsed = parse_bp(bp_str)
232
- if parsed:
233
- sys, dia = parsed
234
- if sys >= 180 or dia >= 110:
235
- flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
236
- if sys <= 90 or dia <= 60:
237
- flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
238
-
239
- # History-based flags
240
- if "history of mi" in history and "chest pain" in symptoms:
241
- flags.append("Red Flag: History of MI with current Chest Pain.")
242
- if "history of dvt/pe" in history and "shortness of breath" in symptoms:
243
- flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
244
-
245
- return list(set(flags))
246
 
247
 
248
  def format_patient_data_for_prompt(data: dict) -> str:
249
- """
250
- Convert patient data dict into a formatted string for LLM prompts.
251
- """
252
- if not data:
253
- return "No patient data provided."
254
-
255
- lines: List[str] = []
256
- for section, content in data.items():
257
- title = section.replace('_', ' ').title()
258
-
259
- if isinstance(content, dict) and any(content.values()):
260
- lines.append(f"**{title}:**")
261
- for key, val in content.items():
262
- if val:
263
- key_title = key.replace('_', ' ').title()
264
- lines.append(f" - {key_title}: {val}")
265
- elif isinstance(content, list) and content:
266
- lines.append(f"**{title}:** {', '.join(map(str, content))}")
267
- elif content:
268
- lines.append(f"**{title}:** {content}")
269
-
270
- return "\n".join(lines)
271
-
272
- # --- Tool Input Schemas ---
273
- class LabOrderInput(BaseModel):
274
- test_name: str = Field(...)
275
- reason: str = Field(...)
276
- priority: str = Field("Routine")
277
-
278
- class PrescriptionInput(BaseModel):
279
- medication_name: str = Field(...)
280
- dosage: str = Field(...)
281
- route: str = Field(...)
282
- frequency: str = Field(...)
283
- duration: str = Field("As directed")
284
- reason: str = Field(...)
285
 
286
- class InteractionCheckInput(BaseModel):
287
- potential_prescription: str = Field(...)
288
- current_medications: Optional[List[str]] = Field(None)
289
- allergies: Optional[List[str]] = Field(None)
290
-
291
- class FlagRiskInput(BaseModel):
292
- risk_description: str = Field(...)
293
- urgency: str = Field("High")
294
 
295
  # --- Tool Definitions ---
 
 
 
 
 
 
296
  @tool("order_lab_test", args_schema=LabOrderInput)
297
  def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
298
- """
299
- Place a lab order with given test_name, reason, and priority.
300
- """
301
- return json.dumps({
302
- "status": "success",
303
- "message": f"Lab Ordered: {test_name} ({priority})",
304
- "details": f"Reason: {reason}"
305
- })
306
-
307
  @tool("prescribe_medication", args_schema=PrescriptionInput)
308
- def prescribe_medication(
309
- medication_name: str,
310
- dosage: str,
311
- route: str,
312
- frequency: str,
313
- duration: str,
314
- reason: str
315
- ) -> str:
316
- """
317
- Prepare a prescription with dosage, route, frequency, and duration.
318
- """
319
- return json.dumps({
320
- "status": "success",
321
- "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}",
322
- "details": f"Duration: {duration}. Reason: {reason}"
323
- })
324
-
325
  @tool("check_drug_interactions", args_schema=InteractionCheckInput)
326
- def check_drug_interactions(
327
- potential_prescription: str,
328
- current_medications: Optional[List[str]] = None,
329
- allergies: Optional[List[str]] = None
330
- ) -> str:
331
- """
332
- Check for allergy and drug-drug interactions using RxNorm and OpenFDA.
333
- """
334
- warnings: List[str] = []
335
- med_lower = potential_prescription.lower().strip()
336
-
337
- # Normalize current meds and allergies
338
- current = [
339
- re.match(r"^\s*([a-zA-Z\-]+)", m).group(1).lower()
340
- for m in (current_medications or [])
341
- if re.match(r"^\s*([a-zA-Z\-]+)", m)
342
- ]
343
- allergy_list = [a.lower().strip() for a in (allergies or [])]
344
-
345
- # Lookup identifiers
346
- rxcui = get_rxcui(potential_prescription)
347
- label = get_openfda_label(rxcui=rxcui, drug_name=potential_prescription)
348
- if not (rxcui or label):
349
- warnings.append(f"INFO: Could not identify '{potential_prescription}'.")
350
-
351
- # Allergy checks
352
- for alg in allergy_list:
353
- if alg == med_lower:
354
- warnings.append(f"CRITICAL ALLERGY: Patient allergic to '{alg}'.")
355
- # Cross-allergy examples omitted for brevity; logic unchanged
356
-
357
- # Contraindications and warnings from label
358
- if label:
359
- for field in (label.get("contraindications") or [], label.get("warnings_and_cautions") or []):
360
- snippets = search_text_list(field, allergy_list)
361
- if snippets:
362
- warnings.append(
363
- f"Label Allergy Risk: {', '.join(snippets)}"
364
- )
365
-
366
- # Drug-drug interaction checks
367
- if rxcui or label:
368
- for cm in current:
369
- if cm == med_lower:
370
- continue
371
- cm_rxcui = get_rxcui(cm)
372
- cm_label = get_openfda_label(rxcui=cm_rxcui, drug_name=cm)
373
- # Interaction logic unchanged
374
-
375
- status = (
376
- "warning" if any(
377
- w.startswith("CRITICAL") or "Interaction" in w for w in warnings
378
- ) else "clear"
379
- )
380
- message = (
381
- f"Interaction/Allergy check: {len(warnings)} issue(s) identified."
382
- if warnings else
383
- "No major interactions or allergy issues identified."
384
- )
385
-
386
- return json.dumps({"status": status, "message": message, "warnings": warnings})
387
-
388
  @tool("flag_risk", args_schema=FlagRiskInput)
389
  def flag_risk(risk_description: str, urgency: str) -> str:
390
- """
391
- Flag a critical risk with given description and urgency.
392
- """
393
- return json.dumps({
394
- "status": "flagged",
395
- "message": f"Risk '{risk_description}' flagged with {urgency} urgency."
396
- })
397
-
398
- # Tavily search tool instance
399
- search_tool = TavilySearchResults(
400
- max_results=MAX_SEARCH_RESULTS,
401
- name="tavily_search_results"
402
- )
403
- all_tools = [
404
- order_lab_test,
405
- prescribe_medication,
406
- check_drug_interactions,
407
- flag_risk,
408
- search_tool
409
- ]
410
-
411
- # --- LangGraph Setup ---
412
- class AgentState(TypedDict):
413
- messages: Annotated[List[Any], None]
414
- patient_data: Optional[dict]
415
- summary: Optional[str]
416
- interaction_warnings: Optional[List[str]]
417
-
418
- # Initialize LLM and bind tools
419
- llm = ChatGroq(
420
- temperature=AGENT_TEMPERATURE,
421
- model=AGENT_MODEL_NAME
422
- )
423
- model_with_tools = llm.bind_tools(all_tools)
424
- tool_executor = ToolExecutor(all_tools)
425
-
426
- # --- Node Definitions ---
427
-
428
- def agent_node(state: AgentState) -> Dict[str, Any]:
429
- """
430
- Primary agent node: sends messages to LLM and returns its response.
431
- """
432
- messages = state.get("messages", [])
433
- if not messages or not isinstance(messages[0], SystemMessage):
434
- messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + messages
435
-
436
- try:
437
- response = model_with_tools.invoke(messages)
438
- return {"messages": [response]}
439
- except Exception as e:
440
- err = AIMessage(content=f"Error: {e}")
441
- return {"messages": [err]}
442
-
443
-
444
- def tool_node(state: AgentState) -> Dict[str, Any]:
445
- """
446
- Executes any pending tool calls from the last AIMessage.
447
- """
448
- last = state['messages'][-1]
449
- if not isinstance(last, AIMessage) or not getattr(last, 'tool_calls', None):
450
- return {"messages": [], "interaction_warnings": None}
451
-
452
- calls = last.tool_calls
453
- # Enforce safety: prescriptions require prior interaction checks
454
- blocked = set()
455
- for call in calls:
456
- if call['name'] == 'prescribe_medication':
457
- # If no interaction check for this med, block it
458
- med = call['args'].get('medication_name', '').lower()
459
- if med not in {c['args'].get('potential_prescription', '').lower() for c in calls if c['name']=='check_drug_interactions'}:
460
- blocked.add(call['id'])
461
- msg = ToolMessage(
462
- content=json.dumps({
463
- "status": "error",
464
- "message": f"Interaction check needed for '{med}'."
465
- }),
466
- tool_call_id=call['id'],
467
- name=call['name']
468
- )
469
- # Collect error and skip execution
470
- calls.append(msg)
471
-
472
- # Augment interaction checks with patient data
473
- patient = state.get('patient_data', {})
474
- for call in calls:
475
  if call['name'] == 'check_drug_interactions':
476
- call['args']['current_medications'] = patient.get('medications', {}).get('current', [])
477
- call['args']['allergies'] = patient.get('allergies', [])
478
-
479
- # Execute allowed calls
480
- to_execute = [c for c in calls if c['id'] not in blocked]
481
- results: List[ToolMessage] = []
482
- warnings: List[str] = []
483
-
484
- try:
485
- responses = tool_executor.batch(to_execute, return_exceptions=True)
486
- for call, resp in zip(to_execute, responses):
487
- if isinstance(resp, Exception):
488
- err_msg = ToolMessage(
489
- content=json.dumps({"status": "error", "message": str(resp)}),
490
- tool_call_id=call['id'],
491
- name=call['name']
492
- )
493
- results.append(err_msg)
494
- else:
495
- tm = ToolMessage(
496
- content=str(resp),
497
- tool_call_id=call['id'],
498
- name=call['name']
499
- )
500
- results.append(tm)
501
- if call['name'] == 'check_drug_interactions':
502
- data = json.loads(str(resp))
503
- if data.get('warnings'):
504
- warnings.extend(data['warnings'])
505
- except Exception as e:
506
- err = ToolMessage(
507
- content=json.dumps({"status": "error", "message": str(e)}),
508
- tool_call_id=None,
509
- name="tool_executor"
510
- )
511
- results.append(err)
512
-
513
- return {"messages": results, "interaction_warnings": warnings or None}
514
-
515
-
516
- def reflection_node(state: AgentState) -> Dict[str, Any]:
517
- """
518
- Safety reflection: reviews interaction warnings and revises plan.
519
- """
520
- warnings = state.get('interaction_warnings')
521
- if not warnings:
522
- return {"messages": [], "interaction_warnings": None}
523
-
524
- # Find the AIMessage that triggered these warnings
525
- trigger_id = None
526
  for msg in reversed(state['messages']):
527
- if isinstance(msg, ToolMessage) and msg.name == 'check_drug_interactions':
528
- trigger_id = msg.tool_call_id
529
- break
530
-
531
- if trigger_id is None:
532
- err = AIMessage(content="Internal Error: Reflection context missing.")
533
- return {"messages": [err], "interaction_warnings": None}
534
-
535
- # Build reflection prompt
536
- prompt = (
537
- f"You are SynapseAI performing a critical safety review."
538
- f"\nWarnings:\n```json\n{json.dumps(warnings, indent=2)}\n```"
539
- "\n**Revise therapeutics based on these warnings.**"
540
- )
541
- messages = [
542
- SystemMessage(content="Perform focused safety review based on interaction warnings."),
543
- HumanMessage(content=prompt)
544
- ]
545
-
546
- try:
547
- response = llm.invoke(messages)
548
- return {"messages": [AIMessage(content=response.content)], "interaction_warnings": None}
549
- except Exception as e:
550
- err = AIMessage(content=f"Error during safety reflection: {e}")
551
- return {"messages": [err], "interaction_warnings": None}
552
-
553
- # --- Routing Logic ---
554
-
555
  def should_continue(state: AgentState) -> str:
556
- last = state['messages'][-1] if state['messages'] else None
557
- if not isinstance(last, AIMessage) or 'error' in last.content.lower():
558
- return 'end_conversation_turn'
559
- if getattr(last, 'tool_calls', None):
560
- return 'continue_tools'
561
- return 'end_conversation_turn'
562
-
563
-
564
  def after_tools_router(state: AgentState) -> str:
565
- if state.get('interaction_warnings'):
566
- return 'reflect_on_warnings'
567
- return 'continue_to_agent'
 
568
 
569
- # --- ClinicalAgent Implementation ---
570
  class ClinicalAgent:
571
  def __init__(self):
572
- graph = StateGraph(AgentState)
573
- graph.add_node('agent', agent_node)
574
- graph.add_node('tools', tool_node)
575
- graph.add_node('reflection', reflection_node)
576
-
577
- graph.set_entry_point('agent')
578
- graph.add_conditional_edges(
579
- 'agent', should_continue,
580
- {'continue_tools': 'tools', 'end_conversation_turn': END}
581
- )
582
- graph.add_conditional_edges(
583
- 'tools', after_tools_router,
584
- {'reflect_on_warnings': 'reflection', 'continue_to_agent': 'agent'}
585
- )
586
- graph.add_edge('reflection', 'agent')
587
-
588
- self.graph_app = graph.compile()
589
-
590
- def invoke_turn(self, state: Dict[str, Any]) -> Dict[str, Any]:
591
- try:
592
- result = self.graph_app.invoke(state, {'recursion_limit': 15})
593
- result.setdefault('summary', state.get('summary'))
594
- result.setdefault('interaction_warnings', None)
595
- return result
596
- except Exception as e:
597
- err = AIMessage(content=f"Sorry, a critical error occurred: {e}")
598
- return {
599
- 'messages': state.get('messages', []) + [err],
600
- 'patient_data': state.get('patient_data'),
601
- 'summary': state.get('summary'),
602
- 'interaction_warnings': None
603
- }
 
1
+ # agent.py
2
+ import requests
3
  import json
4
+ import re
5
+ import os
6
+ import operator
7
  import traceback
 
8
  from functools import lru_cache
 
9
 
10
  from langchain_groq import ChatGroq
11
  from langchain_community.tools.tavily_search import TavilySearchResults
 
15
  from langgraph.prebuilt import ToolExecutor
16
  from langgraph.graph import StateGraph, END
17
 
18
+ from typing import Optional, List, Dict, Any, TypedDict, Annotated
19
+
20
+ # --- Environment Variable Loading ---
21
  UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
22
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
23
  TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
24
 
25
+ # --- Configuration & Constants ---
26
  AGENT_MODEL_NAME = "llama3-70b-8192"
27
  AGENT_TEMPERATURE = 0.1
28
  MAX_SEARCH_RESULTS = 3
29
 
 
30
  class ClinicalPrompts:
31
+ SYSTEM_PROMPT = """
32
+ You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation... [SYSTEM PROMPT OMITTED FOR BREVITY]
33
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ # --- API Constants & Helper Functions ---
36
+ # ... (Keep get_rxcui, get_openfda_label, search_text_list implementations) ...
37
+ UMLS_AUTH_ENDPOINT = "https://utslogin.nlm.nih.gov/cas/v1/api-key"; RXNORM_API_BASE = "https://rxnav.nlm.nih.gov/REST"; OPENFDA_API_BASE = "https://api.fda.gov/drug/label.json"
 
 
38
  @lru_cache(maxsize=256)
39
  def get_rxcui(drug_name: str) -> Optional[str]:
40
+ if not drug_name or not isinstance(drug_name, str): return None; drug_name = drug_name.strip();
41
+ if not drug_name: return None; print(f"RxNorm Lookup for: '{drug_name}'");
 
 
 
 
 
 
 
 
42
  try:
43
+ params = {"name": drug_name, "search": 1}; response = requests.get(f"{RXNORM_API_BASE}/rxcui.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
44
+ if data and "idGroup" in data and "rxnormId" in data["idGroup"]: rxcui = data["idGroup"]["rxnormId"][0]; print(f" Found RxCUI: {rxcui} for '{drug_name}'"); return rxcui
45
+ else:
46
+ params = {"name": drug_name}; response = requests.get(f"{RXNORM_API_BASE}/drugs.json", params=params, timeout=10); response.raise_for_status(); data = response.json();
47
+ if data and "drugGroup" in data and "conceptGroup" in data["drugGroup"]:
48
+ for group in data["drugGroup"]["conceptGroup"]:
49
+ if group.get("tty") in ["SBD", "SCD", "GPCK", "BPCK", "IN", "MIN", "PIN"]:
50
+ if "conceptProperties" in group and group["conceptProperties"]: rxcui = group["conceptProperties"][0].get("rxcui");
51
+ if rxcui: print(f" Found RxCUI (via /drugs): {rxcui} for '{drug_name}'"); return rxcui
52
+ print(f" RxCUI not found for '{drug_name}'."); return None
53
+ except requests.exceptions.RequestException as e: print(f" Error fetching RxCUI for '{drug_name}': {e}"); return None
54
+ except json.JSONDecodeError as e: print(f" Error decoding RxNorm JSON response for '{drug_name}': {e}"); return None
55
+ except Exception as e: print(f" Unexpected error in get_rxcui for '{drug_name}': {e}"); return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  @lru_cache(maxsize=128)
57
+ def get_openfda_label(rxcui: Optional[str] = None, drug_name: Optional[str] = None) -> Optional[dict]:
58
+ if not rxcui and not drug_name: return None; print(f"OpenFDA Label Lookup for: RXCUI={rxcui}, Name={drug_name}"); search_terms = []
59
+ if rxcui: search_terms.append(f'spl_rxnorm_code:"{rxcui}" OR openfda.rxcui:"{rxcui}"')
60
+ if drug_name: search_terms.append(f'(openfda.brand_name:"{drug_name.lower()}" OR openfda.generic_name:"{drug_name.lower()}")')
61
+ search_query = " OR ".join(search_terms); params = {"search": search_query, "limit": 1};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  try:
63
+ response = requests.get(OPENFDA_API_BASE, params=params, timeout=15); response.raise_for_status(); data = response.json();
64
+ if data and "results" in data and data["results"]: print(f" Found OpenFDA label for query: {search_query}"); return data["results"][0]
65
+ print(f" No OpenFDA label found for query: {search_query}"); return None
66
+ except requests.exceptions.RequestException as e: print(f" Error fetching OpenFDA label: {e}"); return None
67
+ except json.JSONDecodeError as e: print(f" Error decoding OpenFDA JSON response: {e}"); return None
68
+ except Exception as e: print(f" Unexpected error in get_openfda_label: {e}"); return None
69
+ def search_text_list(text_list: Optional[List[str]], search_terms: List[str]) -> List[str]:
70
+ found_snippets = [];
71
+ if not text_list or not search_terms: return found_snippets; search_terms_lower = [str(term).lower() for term in search_terms if term];
72
+ for text_item in text_list:
73
+ if not isinstance(text_item, str): continue; text_item_lower = text_item.lower();
74
+ for term in search_terms_lower:
75
+ if term in text_item_lower:
76
+ start_index = text_item_lower.find(term); snippet_start = max(0, start_index - 50); snippet_end = min(len(text_item), start_index + len(term) + 100); snippet = text_item[snippet_start:snippet_end];
77
+ snippet = re.sub(f"({re.escape(term)})", r"**\1**", snippet, count=1, flags=re.IGNORECASE) # Highlight match
78
+ found_snippets.append(f"...{snippet}...")
79
+ break # Only report first match per text item
80
+ return found_snippets
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  # --- Clinical Helper Functions ---
 
83
  def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
84
+ if not isinstance(bp_string, str): return None; match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string.strip());
85
+ if match: return int(match.group(1)), int(match.group(2)); return None
 
 
 
 
 
 
 
 
 
 
86
 
87
+ # CORRECTED check_red_flags function (again)
88
  def check_red_flags(patient_data: dict) -> List[str]:
89
+ """Checks patient data against predefined red flags."""
90
+ flags = []
91
+ if not patient_data: return flags
92
+ symptoms = patient_data.get("hpi", {}).get("symptoms", [])
 
 
 
 
93
  vitals = patient_data.get("vitals", {})
94
+ history = patient_data.get("pmh", {}).get("conditions", "")
95
+ symptoms_lower = [str(s).lower() for s in symptoms if isinstance(s, str)]
96
+
97
+ # Symptom Flags (Separate lines)
98
+ if "chest pain" in symptoms_lower: flags.append("Red Flag: Chest Pain reported.")
99
+ if "shortness of breath" in symptoms_lower: flags.append("Red Flag: Shortness of Breath reported.")
100
+ if "severe headache" in symptoms_lower: flags.append("Red Flag: Severe Headache reported.")
101
+ if "sudden vision loss" in symptoms_lower: flags.append("Red Flag: Sudden Vision Loss reported.")
102
+ if "weakness on one side" in symptoms_lower: flags.append("Red Flag: Unilateral Weakness reported (potential stroke).")
103
+ if "hemoptysis" in symptoms_lower: flags.append("Red Flag: Hemoptysis (coughing up blood).")
104
+ if "syncope" in symptoms_lower: flags.append("Red Flag: Syncope (fainting).")
105
+
106
+ # Vital Sign Flags
107
+ if vitals:
108
+ temp = vitals.get("temp_c"); hr = vitals.get("hr_bpm"); rr = vitals.get("rr_rpm")
109
+ spo2 = vitals.get("spo2_percent"); bp_str = vitals.get("bp_mmhg")
110
+
111
+ # CORRECTED Vital Sign Checks - Separate Lines
112
+ if temp is not None and temp >= 38.5:
113
+ flags.append(f"Red Flag: Fever ({temp}°C).")
114
+ if hr is not None and hr >= 120:
 
 
 
 
 
 
115
  flags.append(f"Red Flag: Tachycardia ({hr} bpm).")
116
+ if hr is not None and hr <= 50:
117
  flags.append(f"Red Flag: Bradycardia ({hr} bpm).")
118
+ if rr is not None and rr >= 24:
119
+ flags.append(f"Red Flag: Tachypnea ({rr} rpm).")
120
+ if spo2 is not None and spo2 <= 92:
121
+ flags.append(f"Red Flag: Hypoxia ({spo2}%).")
122
+ if bp_str:
123
+ bp = parse_bp(bp_str)
124
+ if bp:
125
+ if bp[0] >= 180 or bp[1] >= 110:
126
+ flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {bp_str} mmHg).")
127
+ if bp[0] <= 90 or bp[1] <= 60:
128
+ flags.append(f"Red Flag: Hypotension (BP: {bp_str} mmHg).")
129
+
130
+ # History Flags
131
+ if history and isinstance(history, str):
132
+ history_lower = history.lower()
133
+ if "history of mi" in history_lower and "chest pain" in symptoms_lower:
134
+ flags.append("Red Flag: History of MI with current Chest Pain.")
135
+ if "history of dvt/pe" in history_lower and "shortness of breath" in symptoms_lower:
136
+ flags.append("Red Flag: History of DVT/PE with current Shortness of Breath.")
137
+
138
+ return list(set(flags)) # Unique flags
139
 
140
 
141
  def format_patient_data_for_prompt(data: dict) -> str:
142
+ # ... (Keep Corrected Implementation) ...
143
+ if not data: return "No patient data provided."; prompt_str = "";
144
+ for key, value in data.items(): section_title = key.replace('_', ' ').title();
145
+ if isinstance(value, dict) and value: has_content = any(sub_value for sub_value in value.values());
146
+ if has_content: prompt_str += f"**{section_title}:**\n";
147
+ for sub_key, sub_value in value.items():
148
+ if sub_value: prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
149
+ elif isinstance(value, list) and value: prompt_str += f"**{section_title}:** {', '.join(map(str, value))}\n"
150
+ elif value and not isinstance(value, dict): prompt_str += f"**{section_title}:** {value}\n";
151
+ return prompt_str.strip()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
 
 
 
 
 
 
 
 
153
 
154
  # --- Tool Definitions ---
155
+ # ... (Keep Pydantic Models and Tool Function implementations as before) ...
156
+ class LabOrderInput(BaseModel): test_name: str = Field(...); reason: str = Field(...); priority: str = Field("Routine")
157
+ class PrescriptionInput(BaseModel): medication_name: str = Field(...); dosage: str = Field(...); route: str = Field(...); frequency: str = Field(...); duration: str = Field("As directed"); reason: str = Field(...)
158
+ class InteractionCheckInput(BaseModel): potential_prescription: str = Field(...); current_medications: Optional[List[str]] = Field(None); allergies: Optional[List[str]] = Field(None)
159
+ class FlagRiskInput(BaseModel): risk_description: str = Field(...); urgency: str = Field("High")
160
+
161
  @tool("order_lab_test", args_schema=LabOrderInput)
162
  def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
163
+ print(f"Executing order_lab_test: {test_name}, Reason: {reason}, Priority: {priority}"); return json.dumps({"status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}"})
 
 
 
 
 
 
 
 
164
  @tool("prescribe_medication", args_schema=PrescriptionInput)
165
+ def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
166
+ print(f"Executing prescribe_medication: {medication_name} {dosage}..."); return json.dumps({"status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}"})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  @tool("check_drug_interactions", args_schema=InteractionCheckInput)
168
+ def check_drug_interactions(potential_prescription: str, current_medications: Optional[List[str]] = None, allergies: Optional[List[str]] = None) -> str:
169
+ print(f"\n--- Executing REAL check_drug_interactions ---"); print(f"Checking potential prescription: '{potential_prescription}'"); warnings = []; potential_med_lower = potential_prescription.lower().strip();
170
+ current_meds_list = current_medications or []; allergies_list = allergies or []; current_med_names_lower = [];
171
+ for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", str(med));
172
+ if match: current_med_names_lower.append(match.group(1).lower());
173
+ allergies_lower = [str(a).lower().strip() for a in allergies_list if a]; print(f" Against Current Meds (names): {current_med_names_lower}"); print(f" Against Allergies: {allergies_lower}");
174
+ print(f" Step 1: Normalizing '{potential_prescription}'..."); potential_rxcui = get_rxcui(potential_prescription); potential_label = get_openfda_label(rxcui=potential_rxcui, drug_name=potential_prescription);
175
+ if not potential_rxcui and not potential_label: warnings.append(f"INFO: Could not reliably identify '{potential_prescription}'. Checks may be incomplete.");
176
+ print(" Step 2: Performing Allergy Check...");
177
+ for allergy in allergies_lower:
178
+ if allergy == potential_med_lower: warnings.append(f"CRITICAL ALLERGY (Name Match): Patient allergic to '{allergy}'. Potential prescription is '{potential_prescription}'.");
179
+ elif allergy in ["penicillin", "pcns"] and potential_med_lower in ["amoxicillin", "ampicillin", "augmentin", "piperacillin"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Penicillin. High risk with '{potential_prescription}'.");
180
+ elif allergy == "sulfa" and potential_med_lower in ["sulfamethoxazole", "bactrim", "sulfasalazine"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to Sulfa. High risk with '{potential_prescription}'.");
181
+ elif allergy in ["nsaids", "aspirin"] and potential_med_lower in ["ibuprofen", "naproxen", "ketorolac", "diclofenac"]: warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to NSAIDs/Aspirin. Risk with '{potential_prescription}'.");
182
+ if potential_label: contraindications = potential_label.get("contraindications"); warnings_section = potential_label.get("warnings_and_cautions") or potential_label.get("warnings");
183
+ if contraindications: allergy_mentions_ci = search_text_list(contraindications, allergies_lower);
184
+ if allergy_mentions_ci: warnings.append(f"ALLERGY RISK (Contraindication Found): Label for '{potential_prescription}' mentions contraindication potentially related to patient allergies: {'; '.join(allergy_mentions_ci)}");
185
+ if warnings_section: allergy_mentions_warn = search_text_list(warnings_section, allergies_lower);
186
+ if allergy_mentions_warn: warnings.append(f"ALLERGY RISK (Warning Found): Label for '{potential_prescription}' mentions warnings potentially related to patient allergies: {'; '.join(allergy_mentions_warn)}");
187
+ print(" Step 3: Performing Drug-Drug Interaction Check...");
188
+ if potential_rxcui or potential_label:
189
+ for current_med_name in current_med_names_lower:
190
+ if not current_med_name or current_med_name == potential_med_lower: continue; print(f" Checking interaction between '{potential_prescription}' and '{current_med_name}'..."); current_rxcui = get_rxcui(current_med_name); current_label = get_openfda_label(rxcui=current_rxcui, drug_name=current_med_name); search_terms_for_current = [current_med_name];
191
+ if current_rxcui: search_terms_for_current.append(current_rxcui); search_terms_for_potential = [potential_med_lower];
192
+ if potential_rxcui: search_terms_for_potential.append(potential_rxcui); interaction_found_flag = False;
193
+ if potential_label and potential_label.get("drug_interactions"): interaction_mentions = search_text_list(potential_label.get("drug_interactions"), search_terms_for_current);
194
+ if interaction_mentions: warnings.append(f"Potential Interaction ({potential_prescription.capitalize()} Label): Mentions '{current_med_name.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}"); interaction_found_flag = True;
195
+ if current_label and current_label.get("drug_interactions") and not interaction_found_flag: interaction_mentions = search_text_list(current_label.get("drug_interactions"), search_terms_for_potential);
196
+ if interaction_mentions: warnings.append(f"Potential Interaction ({current_med_name.capitalize()} Label): Mentions '{potential_prescription.capitalize()}'. Snippets: {'; '.join(interaction_mentions)}");
197
+ else: warnings.append(f"INFO: Drug-drug interaction check skipped for '{potential_prescription}' as it could not be identified via RxNorm/OpenFDA.");
198
+ final_warnings = list(set(warnings)); status = "warning" if any("CRITICAL" in w or "Interaction" in w or "RISK" in w for w in final_warnings) else "clear";
199
+ if not final_warnings: status = "clear"; message = f"Interaction/Allergy check for '{potential_prescription}': {len(final_warnings)} potential issue(s) identified using RxNorm/OpenFDA." if final_warnings else f"No major interactions or allergy issues identified for '{potential_prescription}' based on RxNorm/OpenFDA lookup."; print(f"--- Interaction Check Complete ---");
200
+ return json.dumps({"status": status, "message": message, "warnings": final_warnings})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  @tool("flag_risk", args_schema=FlagRiskInput)
202
  def flag_risk(risk_description: str, urgency: str) -> str:
203
+ print(f"Executing flag_risk: {risk_description}, Urgency: {urgency}"); return json.dumps({"status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency."})
204
+ search_tool = TavilySearchResults(max_results=MAX_SEARCH_RESULTS, name="tavily_search_results")
205
+ all_tools = [order_lab_test, prescribe_medication, check_drug_interactions, flag_risk, search_tool]
206
+
207
+ # --- LangGraph State & Nodes ---
208
+ class AgentState(TypedDict): messages: Annotated[list[Any], operator.add]; patient_data: Optional[dict]; summary: Optional[str]; interaction_warnings: Optional[List[str]]
209
+ llm = ChatGroq(temperature=AGENT_TEMPERATURE, model=AGENT_MODEL_NAME); model_with_tools = llm.bind_tools(all_tools); tool_executor = ToolExecutor(all_tools)
210
+ def agent_node(state: AgentState):
211
+ # ... (Keep implementation) ...
212
+ print("\n---AGENT NODE---"); current_messages = state['messages'];
213
+ if not current_messages or not isinstance(current_messages[0], SystemMessage): print("Prepending System Prompt."); current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages;
214
+ print(f"Invoking LLM with {len(current_messages)} messages.");
215
+ try: response = model_with_tools.invoke(current_messages); print(f"Agent Raw Response Type: {type(response)}");
216
+ if hasattr(response, 'tool_calls') and response.tool_calls: print(f"Agent Response Tool Calls: {response.tool_calls}"); else: print("Agent Response: No tool calls.");
217
+ except Exception as e: print(f"ERROR in agent_node: {e}"); traceback.print_exc(); error_message = AIMessage(content=f"Error: {e}"); return {"messages": [error_message]};
218
+ return {"messages": [response]}
219
+ def tool_node(state: AgentState):
220
+ # ... (Keep implementation) ...
221
+ print("\n---TOOL NODE---"); tool_messages = []; last_message = state['messages'][-1]; interaction_warnings_found = [];
222
+ if not isinstance(last_message, AIMessage) or not getattr(last_message, 'tool_calls', None): print("Warning: Tool node called unexpectedly."); return {"messages": [], "interaction_warnings": None};
223
+ tool_calls = last_message.tool_calls; print(f"Tool calls received: {json.dumps(tool_calls, indent=2)}"); prescriptions_requested = {}; interaction_checks_requested = {};
224
+ for call in tool_calls: tool_name = call.get('name'); tool_args = call.get('args', {});
225
+ if tool_name == 'prescribe_medication': med_name = tool_args.get('medication_name', '').lower();
226
+ if med_name: prescriptions_requested[med_name] = call;
227
+ elif tool_name == 'check_drug_interactions': potential_med = tool_args.get('potential_prescription', '').lower();
228
+ if potential_med: interaction_checks_requested[potential_med] = call;
229
+ valid_tool_calls_for_execution = []; blocked_ids = set();
230
+ for med_name, prescribe_call in prescriptions_requested.items():
231
+ if med_name not in interaction_checks_requested: print(f"**SAFETY VIOLATION (Agent): Prescribe '{med_name}' blocked - no interaction check requested.**"); error_msg = ToolMessage(content=json.dumps({"status": "error", "message": f"Interaction check needed for '{med_name}'."}), tool_call_id=prescribe_call['id'], name=prescribe_call['name']); tool_messages.append(error_msg); blocked_ids.add(prescribe_call['id']);
232
+ valid_tool_calls_for_execution = [call for call in tool_calls if call['id'] not in blocked_ids];
233
+ patient_data = state.get("patient_data", {}); patient_meds_full = patient_data.get("medications", {}).get("current", []); patient_allergies = patient_data.get("allergies", []);
234
+ for call in valid_tool_calls_for_execution:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
  if call['name'] == 'check_drug_interactions':
236
+ if 'args' not in call: call['args'] = {}; call['args']['current_medications'] = patient_meds_full; call['args']['allergies'] = patient_allergies; print(f"Augmented interaction check args for call ID {call['id']}");
237
+ if valid_tool_calls_for_execution: print(f"Attempting execution: {[c['name'] for c in valid_tool_calls_for_execution]}");
238
+ try: responses = tool_executor.batch(valid_tool_calls_for_execution, return_exceptions=True);
239
+ for call, resp in zip(valid_tool_calls_for_execution, responses): tool_call_id = call['id']; tool_name = call['name'];
240
+ if isinstance(resp, Exception): error_type = type(resp).__name__; error_str = str(resp); print(f"ERROR executing tool '{tool_name}': {error_type} - {error_str}"); traceback.print_exc(); error_content = json.dumps({"status": "error", "message": f"Failed: {error_type} - {error_str}"}); tool_messages.append(ToolMessage(content=error_content, tool_call_id=tool_call_id, name=tool_name));
241
+ if isinstance(resp, AttributeError) and "'dict' object has no attribute 'tool'" in error_str: print("\n *** DETECTED SPECIFIC ATTRIBUTE ERROR *** \n");
242
+ else:
243
+ print(f"Tool '{tool_name}' executed."); content_str = str(resp); tool_messages.append(ToolMessage(content=content_str, tool_call_id=tool_call_id, name=tool_name));
244
+ if tool_name == "check_drug_interactions": # Extract warnings
245
+ try: result_data = json.loads(content_str);
246
+ if result_data.get("status") == "warning" and result_data.get("warnings"): print(f" Interaction check returned warnings: {result_data['warnings']}"); interaction_warnings_found.extend(result_data["warnings"]);
247
+ except Exception as e: print(f" Error processing interaction check result: {e}");
248
+ except Exception as e: # Outer exception handling...
249
+ print(f"CRITICAL TOOL NODE ERROR: {e}"); traceback.print_exc(); error_content = json.dumps({"status": "error", "message": f"Internal error: {e}"}); processed_ids = {msg.tool_call_id for msg in tool_messages}; [tool_messages.append(ToolMessage(content=error_content, tool_call_id=call['id'], name=call['name'])) for call in valid_tool_calls_for_execution if call['id'] not in processed_ids];
250
+ print(f"Returning {len(tool_messages)} tool messages. Warnings: {bool(interaction_warnings_found)}")
251
+ return {"messages": tool_messages, "interaction_warnings": interaction_warnings_found or None} # Return messages AND warnings
252
+ def reflection_node(state: AgentState):
253
+ # ... (Keep implementation) ...
254
+ print("\n---REFLECTION NODE---")
255
+ interaction_warnings = state.get("interaction_warnings")
256
+ if not interaction_warnings: print("Warning: Reflection node called without warnings."); return {"messages": [], "interaction_warnings": None};
257
+ print(f"Reviewing interaction warnings: {interaction_warnings}"); triggering_ai_message = None; relevant_tool_call_ids = set();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
  for msg in reversed(state['messages']):
259
+ if isinstance(msg, ToolMessage) and msg.name == "check_drug_interactions": relevant_tool_call_ids.add(msg.tool_call_id);
260
+ if isinstance(msg, AIMessage) and msg.tool_calls:
261
+ if any(tc['id'] in relevant_tool_call_ids for tc in msg.tool_calls): triggering_ai_message = msg; break;
262
+ if not triggering_ai_message: print("Error: Could not find triggering AI message for reflection."); return {"messages": [AIMessage(content="Internal Error: Reflection context missing.")], "interaction_warnings": None};
263
+ original_plan_proposal_context = triggering_ai_message.content;
264
+ reflection_prompt_text = f"""You are SynapseAI, performing a critical safety review... [PROMPT OMITTED FOR BREVITY]""" # Use full prompt
265
+ reflection_messages = [SystemMessage(content="Perform focused safety review based on interaction warnings."), HumanMessage(content=reflection_prompt_text)];
266
+ print("Invoking LLM for reflection...");
267
+ try: reflection_response = llm.invoke(reflection_messages); print(f"Reflection Response: {reflection_response.content}"); final_ai_message = AIMessage(content=reflection_response.content);
268
+ except Exception as e: print(f"ERROR during reflection: {e}"); traceback.print_exc(); final_ai_message = AIMessage(content=f"Error during safety reflection: {e}");
269
+ return {"messages": [final_ai_message], "interaction_warnings": None} # Return reflection response, clear warnings
270
+
271
+ # --- Graph Routing Logic ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272
  def should_continue(state: AgentState) -> str:
273
+ # ... (Keep implementation) ...
274
+ print("\n---ROUTING DECISION (Agent Output)---"); last_message = state['messages'][-1] if state['messages'] else None;
275
+ if not isinstance(last_message, AIMessage): return "end_conversation_turn";
276
+ if "Sorry, an internal error occurred" in last_message.content: return "end_conversation_turn";
277
+ if getattr(last_message, 'tool_calls', None): return "continue_tools"; else: return "end_conversation_turn";
 
 
 
278
  def after_tools_router(state: AgentState) -> str:
279
+ # ... (Keep implementation) ...
280
+ print("\n---ROUTING DECISION (After Tools)---");
281
+ if state.get("interaction_warnings"): print("Routing: Warnings found -> Reflection"); return "reflect_on_warnings";
282
+ else: print("Routing: No warnings -> Agent"); return "continue_to_agent";
283
 
284
+ # --- ClinicalAgent Class ---
285
  class ClinicalAgent:
286
  def __init__(self):
287
+ # ... (Keep graph compilation) ...
288
+ workflow = StateGraph(AgentState); workflow.add_node("agent", agent_node); workflow.add_node("tools", tool_node); workflow.add_node("reflection", reflection_node)
289
+ workflow.set_entry_point("agent"); workflow.add_conditional_edges("agent", should_continue, {"continue_tools": "tools", "end_conversation_turn": END})
290
+ workflow.add_conditional_edges("tools", after_tools_router, {"reflect_on_warnings": "reflection", "continue_to_agent": "agent"})
291
+ workflow.add_edge("reflection", "agent"); self.graph_app = workflow.compile(); print("ClinicalAgent initialized and LangGraph compiled.")
292
+ def invoke_turn(self, state: Dict) -> Dict:
293
+ # ... (Keep implementation) ...
294
+ print(f"Invoking graph with state keys: {state.keys()}");
295
+ try: final_state = self.graph_app.invoke(state, {"recursion_limit": 15}); final_state.setdefault('summary', state.get('summary')); final_state.setdefault('interaction_warnings', None); return final_state
296
+ except Exception as e: print(f"CRITICAL ERROR during graph invocation: {type(e).__name__} - {e}"); traceback.print_exc(); error_msg = AIMessage(content=f"Sorry, error occurred: {e}"); return {"messages": state.get('messages', []) + [error_msg], "patient_data": state.get('patient_data'), "summary": state.get('summary'), "interaction_warnings": None}