Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,15 @@
|
|
3 |
# -----------------------------
|
4 |
import streamlit as st
|
5 |
import requests
|
6 |
-
from rdkit import Chem
|
7 |
-
from rdkit.Chem import Draw
|
8 |
import pandas as pd
|
9 |
import matplotlib.pyplot as plt
|
10 |
import seaborn as sns
|
11 |
import logging
|
12 |
import re
|
13 |
-
|
14 |
-
from
|
|
|
|
|
15 |
|
16 |
# Configure advanced logging for full traceability and diagnostics
|
17 |
logging.basicConfig(
|
@@ -22,109 +22,79 @@ logging.basicConfig(
|
|
22 |
logger = logging.getLogger("PRIS")
|
23 |
|
24 |
# -----------------------------
|
25 |
-
#
|
26 |
# -----------------------------
|
27 |
-
|
28 |
-
|
29 |
-
"
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
|
39 |
-
# -----------------------------
|
40 |
-
# SECRETS MANAGEMENT
|
41 |
-
# -----------------------------
|
42 |
-
class APIConfigurationError(Exception):
|
43 |
-
"""Custom exception for missing API configurations."""
|
44 |
-
pass
|
45 |
-
|
46 |
-
try:
|
47 |
-
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
|
48 |
-
BIOPORTAL_API_KEY = st.secrets["BIOPORTAL_API_KEY"]
|
49 |
-
PUB_EMAIL = st.secrets["PUB_EMAIL"]
|
50 |
-
OPENFDA_KEY = st.secrets["OPENFDA_KEY"]
|
51 |
-
|
52 |
-
if not all([OPENAI_API_KEY, BIOPORTAL_API_KEY, PUB_EMAIL, OPENFDA_KEY]):
|
53 |
-
raise APIConfigurationError("One or more required API credentials are missing.")
|
54 |
-
except (KeyError, APIConfigurationError) as e:
|
55 |
-
st.error(f"Critical configuration error: {str(e)}")
|
56 |
-
st.stop()
|
57 |
-
|
58 |
# -----------------------------
|
59 |
# CORE INFRASTRUCTURE
|
60 |
# -----------------------------
|
61 |
class PharmaResearchEngine:
|
62 |
-
"""
|
|
|
|
|
|
|
63 |
|
64 |
def __init__(self):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
def api_request(endpoint: str,
|
69 |
-
params: Optional[Dict] = None,
|
70 |
-
headers: Optional[Dict] = None) -> Optional[Dict]:
|
71 |
"""
|
72 |
-
|
|
|
73 |
"""
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
headers={**DEFAULT_HEADERS, **(headers or {})},
|
79 |
-
timeout=(3.05, 15)
|
80 |
-
)
|
81 |
-
response.raise_for_status() # Raises HTTPError for 4xx/5xx responses
|
82 |
-
return response.json()
|
83 |
-
except requests.exceptions.HTTPError as e:
|
84 |
-
logger.error(f"HTTP Error {e.response.status_code} for {endpoint} with params {params}")
|
85 |
-
st.error(f"API Error: {e.response.status_code} - {e.response.reason}")
|
86 |
-
except Exception as e:
|
87 |
-
logger.error(f"Network error for {endpoint}: {str(e)}")
|
88 |
-
st.error(f"Network error: {str(e)}")
|
89 |
-
return None
|
90 |
|
91 |
-
def get_compound_profile(self, identifier: str) ->
|
92 |
"""
|
93 |
-
Retrieve comprehensive
|
94 |
-
|
95 |
"""
|
96 |
if not self._is_valid_compound_input(identifier):
|
97 |
msg = (f"The input '{identifier}' appears to reference a disease term rather than a chemical compound. "
|
98 |
"For disease-related inquiries, please use the Clinical Trial Analytics module.")
|
99 |
logger.warning(msg)
|
100 |
st.error(msg)
|
101 |
-
return
|
102 |
|
103 |
-
|
104 |
-
pubchem_data = self.api_request(
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
107 |
st.error("No compound data found. Please verify your input (e.g., check for typos or use a recognized compound name).")
|
108 |
-
return
|
109 |
-
|
110 |
-
compound = pubchem_data["PC_Compounds"][0]
|
111 |
-
return {
|
112 |
-
'molecular_formula': self._extract_property(compound, 'Molecular Formula'),
|
113 |
-
'iupac_name': self._extract_property(compound, 'IUPAC Name'),
|
114 |
-
'canonical_smiles': self._extract_property(compound, 'Canonical SMILES'),
|
115 |
-
'molecular_weight': self._extract_property(compound, 'Molecular Weight'),
|
116 |
-
'logp': self._extract_property(compound, 'LogP')
|
117 |
-
}
|
118 |
|
119 |
-
def
|
120 |
-
"""Helper to extract a specific property from PubChem compound data."""
|
121 |
-
for prop in compound.get("props", []):
|
122 |
-
if prop.get("urn", {}).get("label") == prop_name:
|
123 |
-
return prop["value"].get("sval", "N/A")
|
124 |
-
return "N/A"
|
125 |
-
|
126 |
-
@staticmethod
|
127 |
-
def _is_valid_compound_input(user_input: str) -> bool:
|
128 |
"""
|
129 |
Determines whether the user input is a valid chemical compound identifier.
|
130 |
Accepts both conventional compound names and SMILES strings.
|
@@ -136,11 +106,11 @@ class PharmaResearchEngine:
|
|
136 |
if any(term in input_lower for term in disease_terms):
|
137 |
return False
|
138 |
|
139 |
-
#
|
140 |
if re.search(r"[=\(\)#]", user_input):
|
141 |
return True
|
142 |
|
143 |
-
#
|
144 |
if re.match(r'^[A-Za-z0-9\s\-]+$', user_input):
|
145 |
return True
|
146 |
|
@@ -151,94 +121,79 @@ class PharmaResearchEngine:
|
|
151 |
# -----------------------------
|
152 |
class ClinicalIntelligence:
|
153 |
"""
|
154 |
-
Module for clinical trial and regulatory intelligence.
|
155 |
-
Provides deep insights into trial landscapes and FDA approval data.
|
156 |
"""
|
157 |
|
158 |
def __init__(self):
|
159 |
self.engine = PharmaResearchEngine()
|
160 |
|
161 |
-
def get_trial_landscape(self, query: str) ->
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
st.error("Failed to retrieve clinical trials. Please try a different query or check your network connection.")
|
167 |
return []
|
168 |
-
return trials.get("studies", [])[:5]
|
169 |
-
|
170 |
-
def get_fda_approval(self, drug_name: str) -> Optional[Dict]:
|
171 |
-
if not OPENFDA_KEY:
|
172 |
-
st.error("OpenFDA API key not configured.")
|
173 |
-
return None
|
174 |
-
|
175 |
-
params = {
|
176 |
-
"api_key": OPENFDA_KEY,
|
177 |
-
"search": f'openfda.brand_name:"{drug_name}"',
|
178 |
-
"limit": 1
|
179 |
-
}
|
180 |
-
data = self.engine.api_request(API_ENDPOINTS["fda_drug_approval"], params=params)
|
181 |
-
if data and data.get("results"):
|
182 |
-
return data["results"][0]
|
183 |
-
logger.warning(f"No FDA data found for drug: {drug_name}")
|
184 |
-
st.error("No FDA regulatory data found for the specified drug.")
|
185 |
-
return None
|
186 |
|
187 |
class AIDrugInnovator:
|
188 |
"""
|
189 |
-
|
|
|
190 |
"""
|
191 |
|
192 |
def __init__(self):
|
193 |
self.engine = PharmaResearchEngine()
|
194 |
|
195 |
def generate_strategy(self, target: str, strategy: str) -> str:
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
-
|
202 |
-
- Collaborate with top-tier academic and clinical institutions.
|
203 |
|
204 |
-
|
205 |
-
-
|
206 |
-
-
|
207 |
-
-
|
208 |
-
-
|
209 |
|
210 |
-
|
211 |
-
-
|
212 |
-
-
|
213 |
-
-
|
214 |
-
-
|
215 |
-
- Incorporate adaptive trial designs to enhance responsiveness and efficiency.
|
216 |
|
217 |
-
|
218 |
-
-
|
219 |
-
-
|
220 |
-
-
|
221 |
-
-
|
|
|
222 |
|
223 |
-
|
224 |
-
-
|
225 |
-
-
|
226 |
-
-
|
227 |
-
-
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
)
|
237 |
-
return response.choices[0].message.content
|
238 |
-
except Exception as e:
|
239 |
-
logger.error(f"AI Strategy Generation Error: {str(e)}")
|
240 |
-
st.error("Failed to generate strategy. Please check the API configuration or try again later.")
|
241 |
-
return "Strategy generation failed due to an internal error."
|
242 |
|
243 |
# -----------------------------
|
244 |
# STREAMLIT INTERFACE
|
@@ -246,12 +201,13 @@ Please format your response in Markdown with clear section headers."""
|
|
246 |
class PharmaResearchInterface:
|
247 |
"""
|
248 |
Next-generation Streamlit interface for the Pharma Research Intelligence Suite.
|
249 |
-
|
250 |
"""
|
251 |
|
252 |
def __init__(self):
|
253 |
self.clinical_intel = ClinicalIntelligence()
|
254 |
self.ai_innovator = AIDrugInnovator()
|
|
|
255 |
self._configure_page()
|
256 |
|
257 |
def _configure_page(self):
|
@@ -262,8 +218,8 @@ class PharmaResearchInterface:
|
|
262 |
)
|
263 |
st.markdown("""
|
264 |
<style>
|
265 |
-
.main {background-color: #f0f2f6;}
|
266 |
-
.stAlert {padding: 20px;}
|
267 |
.reportview-container .markdown-text-container {font-family: 'Helvetica Neue', Arial, sans-serif}
|
268 |
</style>
|
269 |
""", unsafe_allow_html=True)
|
@@ -296,8 +252,7 @@ class PharmaResearchInterface:
|
|
296 |
col1, col2 = st.columns([1, 3])
|
297 |
with col1:
|
298 |
target = st.text_input("Target Pathobiology:", placeholder="e.g., EGFR mutant NSCLC")
|
299 |
-
strategy = st.selectbox("Development Paradigm:",
|
300 |
-
["First-in-class", "Fast-follower", "Biologic", "ADC", "Gene Therapy"])
|
301 |
if st.button("Generate Development Blueprint"):
|
302 |
with st.spinner("Formulating strategic plan..."):
|
303 |
blueprint = self.ai_innovator.generate_strategy(target, strategy)
|
@@ -310,20 +265,8 @@ class PharmaResearchInterface:
|
|
310 |
with st.spinner("Fetching trial data..."):
|
311 |
trials = self.clinical_intel.get_trial_landscape(trial_query)
|
312 |
if trials:
|
313 |
-
st.subheader("Top
|
314 |
-
|
315 |
-
for study in trials:
|
316 |
-
title = study.get("protocolSection", {}).get("identificationModule", {}).get("briefTitle", "N/A")
|
317 |
-
status = study.get("protocolSection", {}).get("statusModule", {}).get("overallStatus", "N/A")
|
318 |
-
phase = study.get("protocolSection", {}).get("designModule", {}).get("phases", ["N/A"])[0]
|
319 |
-
enrollment = study.get("protocolSection", {}).get("designModule", {}).get("enrollmentInfo", {}).get("count", "N/A")
|
320 |
-
trial_data.append({
|
321 |
-
"Title": title,
|
322 |
-
"Status": status,
|
323 |
-
"Phase": phase,
|
324 |
-
"Enrollment": enrollment
|
325 |
-
})
|
326 |
-
df = pd.DataFrame(trial_data)
|
327 |
st.dataframe(df)
|
328 |
st.subheader("Trial Phase Distribution")
|
329 |
phase_counts = df["Phase"].value_counts()
|
@@ -340,13 +283,13 @@ class PharmaResearchInterface:
|
|
340 |
compound = st.text_input("Analyze Compound:", placeholder="Enter drug name or SMILES (e.g., Aspirin, CC(=O)OC1=CC=CC=C1C(=O)O)")
|
341 |
if st.button("Profile Compound"):
|
342 |
with st.spinner("Decoding molecular profile..."):
|
343 |
-
profile =
|
344 |
if profile:
|
345 |
col1, col2 = st.columns(2)
|
346 |
with col1:
|
347 |
st.subheader("Structural Insights")
|
348 |
smiles = profile.get('canonical_smiles', '')
|
349 |
-
mol = Chem.MolFromSmiles(smiles) if smiles != "N/A" else None
|
350 |
if mol:
|
351 |
img = Draw.MolToImage(mol, size=(400, 300))
|
352 |
st.image(img, caption="2D Molecular Structure")
|
@@ -363,20 +306,22 @@ class PharmaResearchInterface:
|
|
363 |
|
364 |
def _regulatory_hub(self):
|
365 |
st.header("Regulatory Intelligence Hub")
|
366 |
-
st.write("Gain insights into FDA approvals and regulatory pathways.")
|
367 |
drug_name = st.text_input("Enter Drug Name for Regulatory Analysis:", placeholder="e.g., Aspirin")
|
368 |
if st.button("Fetch Regulatory Data"):
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
|
|
376 |
|
377 |
def _ai_strategist(self):
|
378 |
st.header("AI Drug Development Strategist")
|
379 |
-
st.write("Leverage GPT-4 to generate cutting-edge drug development strategies.")
|
380 |
target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g., KRAS G12C mutation")
|
381 |
if st.button("Generate AI Strategy"):
|
382 |
with st.spinner("Generating AI-driven strategy..."):
|
|
|
3 |
# -----------------------------
|
4 |
import streamlit as st
|
5 |
import requests
|
|
|
|
|
6 |
import pandas as pd
|
7 |
import matplotlib.pyplot as plt
|
8 |
import seaborn as sns
|
9 |
import logging
|
10 |
import re
|
11 |
+
import time
|
12 |
+
from rdkit import Chem
|
13 |
+
from rdkit.Chem import Draw
|
14 |
+
from bs4 import BeautifulSoup # For future scraping implementations if needed
|
15 |
|
16 |
# Configure advanced logging for full traceability and diagnostics
|
17 |
logging.basicConfig(
|
|
|
22 |
logger = logging.getLogger("PRIS")
|
23 |
|
24 |
# -----------------------------
|
25 |
+
# FALLBACK / SCRAPED DATA
|
26 |
# -----------------------------
|
27 |
+
# Fallback data for compound profiling (e.g., scraped or cached data)
|
28 |
+
FALLBACK_COMPOUND_DATA = {
|
29 |
+
"aspirin": {
|
30 |
+
"molecular_formula": "C9H8O4",
|
31 |
+
"iupac_name": "2-acetoxybenzoic acid",
|
32 |
+
"canonical_smiles": "CC(=O)OC1=CC=CC=C1C(=O)O", # Valid SMILES for Aspirin
|
33 |
+
"molecular_weight": "180.16",
|
34 |
+
"logp": "N/A"
|
35 |
+
}
|
36 |
}
|
37 |
|
38 |
+
# Fallback clinical trial data (e.g., sample scraped data)
|
39 |
+
FALLBACK_CLINICAL_DATA = {
|
40 |
+
"nct1": [
|
41 |
+
{
|
42 |
+
"Title": "A Study of Novel Therapeutics in Diabetes",
|
43 |
+
"Status": "Completed",
|
44 |
+
"Phase": "Phase II",
|
45 |
+
"Enrollment": "120"
|
46 |
+
}
|
47 |
+
]
|
48 |
}
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# -----------------------------
|
51 |
# CORE INFRASTRUCTURE
|
52 |
# -----------------------------
|
53 |
class PharmaResearchEngine:
|
54 |
+
"""
|
55 |
+
Core engine for integrating pharmaceutical datasets using fallback/scraped data.
|
56 |
+
No external APIs are required; fallback data is used instead.
|
57 |
+
"""
|
58 |
|
59 |
def __init__(self):
|
60 |
+
# In a production environment, this is where an AI client would be initialized.
|
61 |
+
pass
|
62 |
+
|
63 |
+
def api_request(self, endpoint: str, params: dict = None, headers: dict = None) -> dict:
|
|
|
|
|
64 |
"""
|
65 |
+
Dummy API request handler. In this implementation, live API calls are bypassed.
|
66 |
+
Instead, the method always returns an empty dictionary.
|
67 |
"""
|
68 |
+
logger.info(f"Simulated API request to {endpoint} with params {params}")
|
69 |
+
# Simulate a network delay
|
70 |
+
time.sleep(0.5)
|
71 |
+
return {} # Always empty because no API is actually used
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
def get_compound_profile(self, identifier: str) -> dict:
|
74 |
"""
|
75 |
+
Retrieve a comprehensive compound profile.
|
76 |
+
This function first checks if the input is valid, then returns fallback data.
|
77 |
"""
|
78 |
if not self._is_valid_compound_input(identifier):
|
79 |
msg = (f"The input '{identifier}' appears to reference a disease term rather than a chemical compound. "
|
80 |
"For disease-related inquiries, please use the Clinical Trial Analytics module.")
|
81 |
logger.warning(msg)
|
82 |
st.error(msg)
|
83 |
+
return {}
|
84 |
|
85 |
+
# Attempt simulated API call (which in this case does nothing)
|
86 |
+
pubchem_data = self.api_request("https://pubchem.fakeendpoint/rest/pug/compound/name/{}/JSON".format(identifier))
|
87 |
+
|
88 |
+
# If no data is returned from API simulation, use fallback scraped data
|
89 |
+
if identifier.lower() in FALLBACK_COMPOUND_DATA:
|
90 |
+
logger.info(f"Using fallback data for compound '{identifier}'.")
|
91 |
+
return FALLBACK_COMPOUND_DATA[identifier.lower()]
|
92 |
+
else:
|
93 |
+
logger.warning(f"No compound data found for '{identifier}'.")
|
94 |
st.error("No compound data found. Please verify your input (e.g., check for typos or use a recognized compound name).")
|
95 |
+
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
def _is_valid_compound_input(self, user_input: str) -> bool:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
"""
|
99 |
Determines whether the user input is a valid chemical compound identifier.
|
100 |
Accepts both conventional compound names and SMILES strings.
|
|
|
106 |
if any(term in input_lower for term in disease_terms):
|
107 |
return False
|
108 |
|
109 |
+
# Check for SMILES-specific characters (e.g., '=', '(', ')', '#')
|
110 |
if re.search(r"[=\(\)#]", user_input):
|
111 |
return True
|
112 |
|
113 |
+
# If input is alphanumeric (with spaces or hyphens), assume it's a valid compound name.
|
114 |
if re.match(r'^[A-Za-z0-9\s\-]+$', user_input):
|
115 |
return True
|
116 |
|
|
|
121 |
# -----------------------------
|
122 |
class ClinicalIntelligence:
|
123 |
"""
|
124 |
+
Module for clinical trial and regulatory intelligence using fallback data.
|
|
|
125 |
"""
|
126 |
|
127 |
def __init__(self):
|
128 |
self.engine = PharmaResearchEngine()
|
129 |
|
130 |
+
def get_trial_landscape(self, query: str) -> list:
|
131 |
+
"""
|
132 |
+
Retrieve clinical trial information using fallback data.
|
133 |
+
If the query matches a known identifier, return fallback data.
|
134 |
+
"""
|
135 |
+
# Simulate API call (which always fails in this offline mode)
|
136 |
+
trials = self.engine.api_request("https://clinicaltrials.fakeendpoint/api", params={"query": query})
|
137 |
+
|
138 |
+
# Use fallback data if the query (e.g., "nct1") exists in our fallback dataset.
|
139 |
+
key = query.lower().strip()
|
140 |
+
if key in FALLBACK_CLINICAL_DATA:
|
141 |
+
logger.info(f"Using fallback clinical trial data for query '{query}'.")
|
142 |
+
return FALLBACK_CLINICAL_DATA[key]
|
143 |
+
else:
|
144 |
+
logger.error(f"No clinical trial data available for query '{query}'.")
|
145 |
st.error("Failed to retrieve clinical trials. Please try a different query or check your network connection.")
|
146 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
class AIDrugInnovator:
|
149 |
"""
|
150 |
+
Simulated AI module for generating drug development strategies.
|
151 |
+
In this offline mode, a pre-defined strategy is returned.
|
152 |
"""
|
153 |
|
154 |
def __init__(self):
|
155 |
self.engine = PharmaResearchEngine()
|
156 |
|
157 |
def generate_strategy(self, target: str, strategy: str) -> str:
|
158 |
+
"""
|
159 |
+
Return a robust, pre-defined strategic blueprint for drug development.
|
160 |
+
"""
|
161 |
+
# Here, we simulate the GPT-4 response with a comprehensive text.
|
162 |
+
simulated_response = f"""
|
163 |
+
# First-in-Class Strategy for {target.title()}
|
|
|
164 |
|
165 |
+
## Target Validation Approach
|
166 |
+
- **Literature Review:** Perform an exhaustive review to understand the molecular underpinnings of {target}.
|
167 |
+
- **Preclinical Models:** Validate targets using state-of-the-art in vitro and in vivo models.
|
168 |
+
- **Omics Integration:** Leverage genomic, proteomic, and metabolomic data to pinpoint actionable targets.
|
169 |
+
- **Collaborative Research:** Engage with leading academic and clinical institutions for validation.
|
170 |
|
171 |
+
## Lead Optimization Tactics
|
172 |
+
- **Chemical Optimization:** Refine lead compounds to improve potency, selectivity, and pharmacokinetic profiles.
|
173 |
+
- **High-Throughput Screening:** Utilize cutting-edge assays for iterative lead refinement.
|
174 |
+
- **In Vivo Efficacy:** Conduct rigorous animal studies to assess efficacy and safety.
|
175 |
+
- **Patent Strategy:** Secure intellectual property with comprehensive patent landscaping.
|
|
|
176 |
|
177 |
+
## Clinical Trial Design
|
178 |
+
- **Phase I:** Safety and dosage trials with a focus on pharmacodynamics.
|
179 |
+
- **Phase II:** Efficacy and side-effect profiling in an expanded cohort.
|
180 |
+
- **Phase III:** Large-scale trials comparing with the current standard of care.
|
181 |
+
- **Phase IV:** Post-marketing surveillance for long-term outcomes.
|
182 |
+
- **Adaptive Designs:** Employ adaptive and basket trial designs to optimize trial efficiency.
|
183 |
|
184 |
+
## Regulatory Pathway Analysis
|
185 |
+
- **Pre-IND Consultation:** Early engagement with regulatory bodies to align on requirements.
|
186 |
+
- **IND Preparation:** Develop robust IND submissions incorporating all preclinical data.
|
187 |
+
- **Continuous Dialogue:** Maintain proactive communication with regulators throughout development.
|
188 |
+
- **Expedited Programs:** Explore Fast Track and Breakthrough Therapy designations.
|
189 |
|
190 |
+
## Commercial Potential Assessment
|
191 |
+
- **Market Research:** Conduct deep-dive analyses into market size, competition, and unmet needs.
|
192 |
+
- **Patient Segmentation:** Identify target patient populations for tailored therapeutic approaches.
|
193 |
+
- **Pricing & Reimbursement:** Develop dynamic pricing strategies and secure payer alignment.
|
194 |
+
- **Go-To-Market:** Formulate a comprehensive multi-channel marketing strategy.
|
195 |
+
"""
|
196 |
+
return simulated_response
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
# -----------------------------
|
199 |
# STREAMLIT INTERFACE
|
|
|
201 |
class PharmaResearchInterface:
|
202 |
"""
|
203 |
Next-generation Streamlit interface for the Pharma Research Intelligence Suite.
|
204 |
+
Uses fallback and scraped data to simulate a fully operational research platform.
|
205 |
"""
|
206 |
|
207 |
def __init__(self):
|
208 |
self.clinical_intel = ClinicalIntelligence()
|
209 |
self.ai_innovator = AIDrugInnovator()
|
210 |
+
self.engine = PharmaResearchEngine()
|
211 |
self._configure_page()
|
212 |
|
213 |
def _configure_page(self):
|
|
|
218 |
)
|
219 |
st.markdown("""
|
220 |
<style>
|
221 |
+
.main {background-color: #f0f2f6; padding: 20px;}
|
222 |
+
.stAlert {padding: 20px; font-size: 1.1em;}
|
223 |
.reportview-container .markdown-text-container {font-family: 'Helvetica Neue', Arial, sans-serif}
|
224 |
</style>
|
225 |
""", unsafe_allow_html=True)
|
|
|
252 |
col1, col2 = st.columns([1, 3])
|
253 |
with col1:
|
254 |
target = st.text_input("Target Pathobiology:", placeholder="e.g., EGFR mutant NSCLC")
|
255 |
+
strategy = st.selectbox("Development Paradigm:", ["First-in-class", "Fast-follower", "Biologic", "ADC", "Gene Therapy"])
|
|
|
256 |
if st.button("Generate Development Blueprint"):
|
257 |
with st.spinner("Formulating strategic plan..."):
|
258 |
blueprint = self.ai_innovator.generate_strategy(target, strategy)
|
|
|
265 |
with st.spinner("Fetching trial data..."):
|
266 |
trials = self.clinical_intel.get_trial_landscape(trial_query)
|
267 |
if trials:
|
268 |
+
st.subheader("Top Clinical Trials")
|
269 |
+
df = pd.DataFrame(trials)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
st.dataframe(df)
|
271 |
st.subheader("Trial Phase Distribution")
|
272 |
phase_counts = df["Phase"].value_counts()
|
|
|
283 |
compound = st.text_input("Analyze Compound:", placeholder="Enter drug name or SMILES (e.g., Aspirin, CC(=O)OC1=CC=CC=C1C(=O)O)")
|
284 |
if st.button("Profile Compound"):
|
285 |
with st.spinner("Decoding molecular profile..."):
|
286 |
+
profile = self.engine.get_compound_profile(compound)
|
287 |
if profile:
|
288 |
col1, col2 = st.columns(2)
|
289 |
with col1:
|
290 |
st.subheader("Structural Insights")
|
291 |
smiles = profile.get('canonical_smiles', '')
|
292 |
+
mol = Chem.MolFromSmiles(smiles) if smiles and smiles != "N/A" else None
|
293 |
if mol:
|
294 |
img = Draw.MolToImage(mol, size=(400, 300))
|
295 |
st.image(img, caption="2D Molecular Structure")
|
|
|
306 |
|
307 |
def _regulatory_hub(self):
|
308 |
st.header("Regulatory Intelligence Hub")
|
309 |
+
st.write("Gain insights into FDA approvals and regulatory pathways (using local sample data).")
|
310 |
drug_name = st.text_input("Enter Drug Name for Regulatory Analysis:", placeholder="e.g., Aspirin")
|
311 |
if st.button("Fetch Regulatory Data"):
|
312 |
+
# Since no API is available, we simulate regulatory data.
|
313 |
+
sample_regulatory_data = {
|
314 |
+
"drug_name": drug_name,
|
315 |
+
"approval_status": "Approved",
|
316 |
+
"approval_date": "1985-07-01",
|
317 |
+
"label": "Sample regulatory label information."
|
318 |
+
}
|
319 |
+
st.subheader("FDA Approval Details")
|
320 |
+
st.json(sample_regulatory_data)
|
321 |
|
322 |
def _ai_strategist(self):
|
323 |
st.header("AI Drug Development Strategist")
|
324 |
+
st.write("Leverage simulated GPT-4 to generate cutting-edge drug development strategies.")
|
325 |
target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g., KRAS G12C mutation")
|
326 |
if st.button("Generate AI Strategy"):
|
327 |
with st.spinner("Generating AI-driven strategy..."):
|