Spaces:
Runtime error
Runtime error
File size: 5,347 Bytes
34fbcfb 3172d47 bce56c0 114694a 3172d47 34fbcfb 7a70c71 34fbcfb 91caef4 3172d47 7a70c71 3172d47 6912dca 7a70c71 3172d47 7a70c71 93baba5 114694a 93baba5 7a70c71 3172d47 370f6d7 3172d47 370f6d7 eb2943c 3172d47 7a70c71 3172d47 7a70c71 6912dca 3172d47 91caef4 3172d47 7a70c71 3172d47 6912dca 3172d47 7a70c71 3172d47 bce56c0 7a70c71 34fbcfb bce56c0 34fbcfb bce56c0 34fbcfb bce56c0 34fbcfb bce56c0 34fbcfb 7a70c71 34fbcfb 7a70c71 34fbcfb 91caef4 34fbcfb 7a70c71 91caef4 34fbcfb 7a70c71 34fbcfb 7a70c71 34fbcfb bce56c0 91caef4 7a70c71 91caef4 66c9618 bce56c0 7a70c71 2f2384f 7a70c71 91caef4 16316d5 7a70c71 fe9ff70 6c938dd 48392ea 6c938dd 34fbcfb 6c938dd 34fbcfb 6c938dd 34fbcfb 6c938dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import requests
import emoji
import re
import json
from thefuzz import process, fuzz
import numpy as np
import re
from string import punctuation
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection"
headers = {"Authorization": "Bearer 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"}
def query(text):
text = {"inputs": text}
response = requests.post(API_URL, headers=headers, json=text)
return response.json()
def read_text(filename, filetype='txt'):
words = []
if filetype == 'txt':
with open(filename + '.txt') as file:
words = [line.rstrip() for line in file]
words = list(set(words))
elif filetype == 'json':
with open(filename + '.json') as json_file:
words = json.load(json_file)
return words
contractions = read_text('contractions', 'json')
lookup_words = read_text('lookup_words')
obj_pronouns = read_text('obj_pronouns')
profanities = read_text('profanities', 'json')
# for profanity in profanities:
# print(profanity, process.extractOne(profanity, tweet.split(), scorer=fuzz.ratio))
def fuzzy_lookup(tweet):
matched_profanity = dict()
# Convert Profanity Dict to List
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
# Loop each word in tweet
for word in tweet.split():
scores = []
matched_words = []
# Remove punctuations
word = word.strip(punctuation)
# Only get digits and letters then lowercase
processed_word = re.sub("[^a-zA-Z0-9@]", "", word)
# If word > 4 chars
if len(processed_word) >= 4:
# Get fuzzy ratio
for lookup_word in lookup_words:
score = fuzz.ratio(processed_word, lookup_word)
if score >= 70:
scores.append(score)
matched_words.append(lookup_word)
if len(scores) > 0:
max_score_index = np.argmax(scores)
if matched_words[max_score_index] in lookup_profanity:
matched_profanity[word] = matched_words[max_score_index]
for word, profanity in matched_profanity.items():
word_split = word.split(profanity[-2:])
for pronoun in obj_pronouns:
if len(word_split) > 1:
if pronoun == word_split[-1]:
matched_profanity[word] = profanity + ' ' + pronoun
break
# Replace each profanities by fuzzy lookup result
for word, profanity in matched_profanity.items():
tweet = tweet.replace(word, profanity)
for profanity, prof_varations in profanities.items():
if len(prof_varations) > 0:
for prof_variant in prof_varations:
tweet = tweet.replace(prof_variant, profanity)
return tweet, matched_profanity
def preprocess(tweet):
# Lowercase
tweet = tweet.lower()
# Remove emojis
tweet = emoji.replace_emoji(tweet, replace='')
# Replace elongated words 'grabeee' -> 'grabe' (not applicable on 2 corresponding letter)
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet)
# Split sentence into list of words
row_split = tweet.split()
for index, word in enumerate(row_split):
# Remove links
if 'http' in word:
row_split[index] = ''
# Unify laugh texts format to 'haha'
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha']
if any(x in word for x in laugh_texts):
row_split[index] = 'haha'
# Combine list of words back to sentence
preprocessed_tweet = ' '.join(filter(None, row_split))
# Fuzzy Lookup
preprocessed_tweet, matches = fuzzy_lookup(preprocessed_tweet)
# Check if output contains single word then return null
if len(preprocessed_tweet.split()) == 1:
return preprocessed_tweet, matches
# Expand Contractions
for i in contractions.items():
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet)
return preprocessed_tweet, matches
def predict(tweet):
preprocessed_tweet, matched_profanity = preprocess(tweet)
prediction = query(preprocessed_tweet)
if type(prediction) is dict:
# return "Model is still loading. Try again."
return "Model is loading. Try again."
if bool(matched_profanity) == False:
return "No profanity"
prediction = [tuple(i.values()) for i in prediction[0]]
prediction = dict((x, y) for x, y in prediction)
print("\nTWEET:", tweet)
print("DETECTED PROFANITY:", matched_profanity)
print("LABELS:", prediction, "\n")
return prediction
demo = gr.Interface(
fn=predict,
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION")],
examples=['Tangina mo naman sobrang yabang mo gago!!๐ ๐ค @davidrafael',
'Napakainit ngayong araw pakshet namaaan!!',
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
'Bobo ka ba? napakadali lang nyan eh... ๐คก',
'Uy gago laptrip yung nangyare samen kanina HAHAHA๐๐'],
)
demo.launch() |