pratikshahp commited on
Commit
072fb13
·
verified ·
1 Parent(s): d189514

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  import fitz # PyMuPDF
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
- from langchain.vectorstores import Chroma
6
  from langchain_community.embeddings import HuggingFaceEmbeddings
7
  from langchain_text_splitters import RecursiveCharacterTextSplitter
8
  import os
@@ -33,9 +33,9 @@ def get_llm_response(input_prompt, content, prompt):
33
 
34
 
35
  # Function to extract text from PDF file
36
- def extract_text_from_pdf(file):
37
  try:
38
- doc = fitz.open(stream=file.read(), filetype="pdf")
39
  text = ""
40
  for page in doc:
41
  text += page.get_text()
@@ -47,7 +47,7 @@ def extract_text_from_pdf(file):
47
  def process_pdf(uploaded_file, prompt):
48
  if uploaded_file is not None:
49
  # Extract text from uploaded PDF file
50
- pdf_text = extract_text_from_pdf(uploaded_file)
51
  if pdf_text:
52
  try:
53
  # Create embeddings
@@ -92,8 +92,8 @@ def process_pdf(uploaded_file, prompt):
92
  def main():
93
  gr.Interface(
94
  fn=process_pdf,
95
- inputs=[gr.components.File(type="file", label="Upload PDF File"),
96
- gr.components.Textbox(lines=2, placeholder="Ask a Question")],
97
  outputs="text",
98
  title="PDF Chatbot",
99
  description="Upload a PDF file and ask questions about its content."
 
2
  import fitz # PyMuPDF
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
+ from langchain_community.vectorstores import Chroma
6
  from langchain_community.embeddings import HuggingFaceEmbeddings
7
  from langchain_text_splitters import RecursiveCharacterTextSplitter
8
  import os
 
33
 
34
 
35
  # Function to extract text from PDF file
36
+ def extract_text_from_pdf(file_path):
37
  try:
38
+ doc = fitz.open(file_path)
39
  text = ""
40
  for page in doc:
41
  text += page.get_text()
 
47
  def process_pdf(uploaded_file, prompt):
48
  if uploaded_file is not None:
49
  # Extract text from uploaded PDF file
50
+ pdf_text = extract_text_from_pdf(uploaded_file.name)
51
  if pdf_text:
52
  try:
53
  # Create embeddings
 
92
  def main():
93
  gr.Interface(
94
  fn=process_pdf,
95
+ inputs=[gr.File(type="filepath", label="Upload PDF File"),
96
+ gr.Textbox(lines=2, placeholder="Ask a Question")],
97
  outputs="text",
98
  title="PDF Chatbot",
99
  description="Upload a PDF file and ask questions about its content."