File size: 1,111 Bytes
010715e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load your model and tokenizer WITHOUT 4-bit quantization
model_name = "mherrador/CE5.0_expert"  
device = torch.device("cpu") 

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    # No quantization_config here 
    trust_remote_code=True,
).to(device)  

tokenizer = AutoTokenizer.from_pretrained(model_name)

# Function to generate recommendations
def generate_recommendations(input_text):
    inputs = tokenizer(input_text, return_tensors="pt").to(device)  # Move input to device
    outputs = model.generate(**inputs, max_new_tokens=128)
    recommendations = tokenizer.batch_decode(outputs)[0]
    return recommendations

# Create the Gradio interface
iface = gr.Interface(
    fn=generate_recommendations,
    inputs=gr.Textbox(lines=5, placeholder="Enter your questions here..."),
    outputs=gr.Textbox(lines=10),
    title="Circular Economy Recommender",
    description="Enter your questions about circular economy practices to get recommendations.",
)

# Launch the interface
iface.launch()