michaelmc1618 commited on
Commit
ca30f38
·
verified ·
1 Parent(s): 8cd8a06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +143 -106
app.py CHANGED
@@ -1,36 +1,143 @@
1
  import os
2
  import pandas as pd
3
  import gradio as gr
4
- from transformers import pipeline
5
 
6
- # Initialize the question-answering pipeline with the 'deepset/roberta-base-squad2' model
7
- qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- # GDPR Compliance Expert
10
- def evaluate_gdpr_compliance(audit_data):
11
- # Example question for GDPR compliance
12
- question = (
13
- "Based on the provided audit data, are there any compliance issues related to the GDPR regulations? "
14
- "Evaluate the data processing, storage, and protection practices."
15
- )
16
-
17
- # Apply the question-answering pipeline
18
- response = qa_pipeline(question=question, context=audit_data)
19
- return response['answer']
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- # PCI Compliance Expert
22
- def evaluate_pci_compliance(audit_data):
23
- # Example question for PCI DSS compliance
24
- question = (
25
- "Based on the provided audit data, are there any compliance issues related to PCI DSS regulations? "
26
- "Evaluate the payment card data security, storage, and processing practices."
27
- )
28
-
29
- # Apply the question-answering pipeline
30
- response = qa_pipeline(question=question, context=audit_data)
31
- return response['answer']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
- # Analyze CSV file input
34
  def analyze_csv_file(file_obj):
35
  # Read the CSV file into a pandas DataFrame
36
  try:
@@ -41,99 +148,29 @@ def analyze_csv_file(file_obj):
41
  # Convert DataFrame to dictionary for processing
42
  audit_data = df.to_dict(orient='records')
43
 
44
- # Convert the dictionary to a string format suitable for the QA model
45
- audit_data_str = ""
46
  for record in audit_data:
47
- audit_data_str += " ".join([f"{key}: {value}" for key, value in record.items()]) + "\n"
48
 
49
- return audit_data_str
50
-
51
- # Custom CSS for the specified theme
52
- custom_css = """
53
- body {
54
- background-color: #000000;
55
- color: #ffffff;
56
- font-family: Arial, sans-serif;
57
- }
58
- .gradio-container {
59
- max-width: 1000px;
60
- margin: 0 auto;
61
- padding: 20px;
62
- background-color: #000000;
63
- border: 1px solid #e0e0e0;
64
- border-radius: 8px;
65
- box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
66
- }
67
- .gr-button {
68
- background-color: #000000 !important;
69
- border-color: #ff0000 !important;
70
- color: #ff0000 !important;
71
- margin: 5px;
72
- }
73
- .gr-button:hover {
74
- background-color: #ff0000 !important;
75
- border-color: #ff0000 !important;
76
- color: #000000 !important;
77
- }
78
- textarea.gr-textbox {
79
- border-radius: 4px !important;
80
- border: 2px solid #ff0000 !important;
81
- background-color: #ffffff !important;
82
- color: #000000 !important;
83
- }
84
- textarea.gr-textbox:focus {
85
- border-color: #ff0000 !important;
86
- outline: 0 !important;
87
- box-shadow: 0 0 0 0.2rem rgba(255, 0, 0, 0.5) !important;
88
- }
89
- #flagging-button {
90
- display: none;
91
- }
92
- footer {
93
- display: none;
94
- }
95
- .chatbox .chat-container .chat-message {
96
- background-color: #000000 !important;
97
- color: #ffffff !important;
98
- }
99
- .chatbox .chat-container .chat-message-input {
100
- background-color: #000000 !important;
101
- color: #ffffff !important;
102
- }
103
- .gr-markdown {
104
- background-color: #000000 !important;
105
- color: #ffffff !important;
106
- }
107
- .gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
108
- color: #ffffff !important;
109
- }
110
- .score-box {
111
- width: 60px;
112
- height: 60px;
113
- display: flex;
114
- align-items: center
115
- }
116
- .label-hidden .gr-label {
117
- display: none;
118
- }
119
- """
120
 
121
  # Gradio Interface
122
- with gr.Blocks(css=custom_css) as demo:
123
  with gr.Column():
124
  gr.Markdown("# GDPR and PCI Compliance Evaluation\n### Upload Audit Data in CSV Format")
125
  csv_file = gr.File(label="Upload CSV file")
126
 
127
- gdpr_compliance = gr.Textbox(lines=10, placeholder="GDPR Compliance Analysis...", label="GDPR Compliance Analysis", elem_classes="label-hidden")
128
- pci_compliance = gr.Textbox(lines=10, placeholder="PCI Compliance Analysis...", label="PCI Compliance Analysis", elem_classes="label-hidden")
129
 
130
  def run_compliance_checks(csv_file):
131
  if csv_file is None:
132
  return "No file uploaded", "No file uploaded"
133
  audit_data = analyze_csv_file(csv_file)
134
- gdpr_analysis = evaluate_gdpr_compliance(audit_data)
135
- pci_analysis = evaluate_pci_compliance(audit_data)
136
- return gdpr_analysis, pci_analysis
137
 
138
  check_compliance_btn = gr.Button("Run Compliance Checks")
139
  check_compliance_btn.click(run_compliance_checks, inputs=[csv_file], outputs=[gdpr_compliance, pci_compliance])
 
1
  import os
2
  import pandas as pd
3
  import gradio as gr
4
+ from datetime import datetime
5
 
6
+ # Function to analyze audit data for GDPR compliance
7
+ def analyze_data_for_gdpr(audit_data):
8
+ findings = {
9
+ "system_info": {
10
+ "os_version": audit_data.get("os_version", "Unknown"),
11
+ "architecture": audit_data.get("architecture", "Unknown"),
12
+ "memory": audit_data.get("memory", "Unknown")
13
+ },
14
+ "disk_usage": {
15
+ "usage_percent": audit_data.get("disk_usage", {}).get("usage_percent", "Unknown"),
16
+ },
17
+ "network_info": {
18
+ "interfaces": audit_data.get("network_info", {}).get("interfaces", "Unknown"),
19
+ },
20
+ "security_measures": {
21
+ "encryption": audit_data.get("security_measures", {}).get("encryption", False),
22
+ "data_anonymization": audit_data.get("security_measures", {}).get("data_anonymization", False)
23
+ },
24
+ "running_processes": audit_data.get("running_processes", []),
25
+ "software_inventory": audit_data.get("software_inventory", [])
26
+ }
27
+
28
+ recommendations = []
29
+ if not findings["security_measures"]["encryption"]:
30
+ recommendations.append("Implement Encryption: Ensure that both stored and transmitted data are encrypted.")
31
+ if not findings["security_measures"]["data_anonymization"]:
32
+ recommendations.append("Implement Data Anonymization: Ensure that sensitive data is anonymized during storage.")
33
+
34
+ return findings, recommendations
35
 
36
+ # Function to analyze audit data for PCI compliance
37
+ def analyze_data_for_pci(audit_data):
38
+ findings = {
39
+ "pci_security": {
40
+ "firewall": audit_data.get("pci_security", {}).get("firewall", False),
41
+ "antivirus": audit_data.get("pci_security", {}).get("antivirus", False),
42
+ "intrusion_detection": audit_data.get("pci_security", {}).get("intrusion_detection", False),
43
+ },
44
+ "card_data_security": {
45
+ "encryption": audit_data.get("card_data_security", {}).get("encryption", False),
46
+ "storage_protection": audit_data.get("card_data_security", {}).get("storage_protection", False)
47
+ },
48
+ "network_configurations": audit_data.get("network_configurations", [])
49
+ }
50
+
51
+ recommendations = []
52
+ if not findings["pci_security"]["firewall"]:
53
+ recommendations.append("Implement Firewall: Ensure that a firewall is in place to protect the network.")
54
+ if not findings["card_data_security"]["encryption"]:
55
+ recommendations.append("Encrypt Card Data: Ensure all cardholder data is encrypted during storage and transmission.")
56
+
57
+ return findings, recommendations
58
 
59
+ # Generate GDPR Compliance Report
60
+ def generate_gdpr_report(audit_data, company_name="Company Name", system_name="System Name"):
61
+ findings, recommendations = analyze_data_for_gdpr(audit_data)
62
+
63
+ report_content = f"""
64
+ GDPR Compliance Evaluation Report
65
+
66
+ Title: GDPR Compliance Evaluation Report
67
+ Date: {datetime.now().strftime('%Y-%m-%d')}
68
+ Prepared by: [Your Name]
69
+ For: {company_name}
70
+
71
+ Executive Summary:
72
+ This report evaluates the compliance of {company_name} with the General Data Protection Regulation (GDPR).
73
+ Based on the system audit and analysis of data handling processes, this report provides findings, identifies compliance gaps,
74
+ and suggests recommendations to enhance GDPR adherence.
75
+
76
+ Findings:
77
+ System Information:
78
+ - OS Version: {findings['system_info']['os_version']}
79
+ - Architecture: {findings['system_info']['architecture']}
80
+ - Memory: {findings['system_info']['memory']}
81
+
82
+ Disk Usage:
83
+ - Usage Percent: {findings['disk_usage']['usage_percent']}
84
+
85
+ Network Info:
86
+ - Interfaces: {', '.join(findings['network_info']['interfaces'])}
87
+
88
+ Security Measures:
89
+ - Encryption: {"Yes" if findings['security_measures']['encryption'] else "No"}
90
+ - Data Anonymization: {"Yes" if findings['security_measures']['data_anonymization'] else "No"}
91
+
92
+ Running Processes:
93
+ - Processes: {', '.join(findings['running_processes'])}
94
+
95
+ Software Inventory:
96
+ - Installed Software: {', '.join(findings['software_inventory'])}
97
+
98
+ Recommendations:
99
+ {''.join(f'- {rec}\n' for rec in recommendations)}
100
+ """
101
+
102
+ return report_content
103
+
104
+ # Generate PCI Compliance Report
105
+ def generate_pci_report(audit_data, company_name="Company Name", system_name="System Name"):
106
+ findings, recommendations = analyze_data_for_pci(audit_data)
107
+
108
+ report_content = f"""
109
+ PCI Compliance Evaluation Report
110
+
111
+ Title: PCI Compliance Evaluation Report
112
+ Date: {datetime.now().strftime('%Y-%m-%d')}
113
+ Prepared by: [Your Name]
114
+ For: {company_name}
115
+
116
+ Executive Summary:
117
+ This report evaluates the compliance of {company_name} with the Payment Card Industry Data Security Standard (PCI DSS).
118
+ Based on the system audit and analysis of data handling processes, this report provides findings, identifies compliance gaps,
119
+ and suggests recommendations to enhance PCI DSS adherence.
120
+
121
+ Findings:
122
+ PCI Security Measures:
123
+ - Firewall: {"Yes" if findings['pci_security']['firewall'] else "No"}
124
+ - Antivirus: {"Yes" if findings['pci_security']['antivirus'] else "No"}
125
+ - Intrusion Detection: {"Yes" if findings['pci_security']['intrusion_detection'] else "No"}
126
+
127
+ Card Data Security:
128
+ - Encryption: {"Yes" if findings['card_data_security']['encryption'] else "No"}
129
+ - Storage Protection: {"Yes" if findings['card_data_security']['storage_protection'] else "No"}
130
+
131
+ Network Configurations:
132
+ - Configurations: {', '.join(findings['network_configurations'])}
133
+
134
+ Recommendations:
135
+ {''.join(f'- {rec}\n' for rec in recommendations)}
136
+ """
137
+
138
+ return report_content
139
 
140
+ # Analyze CSV file input and convert it to JSON-like dictionary for processing
141
  def analyze_csv_file(file_obj):
142
  # Read the CSV file into a pandas DataFrame
143
  try:
 
148
  # Convert DataFrame to dictionary for processing
149
  audit_data = df.to_dict(orient='records')
150
 
151
+ # Convert the dictionary to a JSON-like structure suitable for analysis
152
+ audit_data_json = {}
153
  for record in audit_data:
154
+ audit_data_json.update(record)
155
 
156
+ return audit_data_json
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
  # Gradio Interface
159
+ with gr.Blocks() as demo:
160
  with gr.Column():
161
  gr.Markdown("# GDPR and PCI Compliance Evaluation\n### Upload Audit Data in CSV Format")
162
  csv_file = gr.File(label="Upload CSV file")
163
 
164
+ gdpr_compliance = gr.Textbox(lines=10, placeholder="GDPR Compliance Analysis...", label="GDPR Compliance Analysis")
165
+ pci_compliance = gr.Textbox(lines=10, placeholder="PCI Compliance Analysis...", label="PCI Compliance Analysis")
166
 
167
  def run_compliance_checks(csv_file):
168
  if csv_file is None:
169
  return "No file uploaded", "No file uploaded"
170
  audit_data = analyze_csv_file(csv_file)
171
+ gdpr_report = generate_gdpr_report(audit_data)
172
+ pci_report = generate_pci_report(audit_data)
173
+ return gdpr_report, pci_report
174
 
175
  check_compliance_btn = gr.Button("Run Compliance Checks")
176
  check_compliance_btn.click(run_compliance_checks, inputs=[csv_file], outputs=[gdpr_compliance, pci_compliance])