Hawkeye_AI / app.py
michaelmc1618's picture
Update app.py
ed6ee30 verified
raw
history blame
10.7 kB
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
os.system('pip install PyMuPDF')
os.system('pip install PyPDF2')
os.system('pip install pdf2image')
os.system('pip install gradio_pdf')
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM
from datasets import load_dataset
import fitz # PyMuPDF
from pathlib import Path
dir_ = Path(__file__).parent
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
# Load the BERT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-uncased")
# Create the fill-mask pipeline
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
try:
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
if token is not None:
response += token
yield response, history + [(message, response)]
except Exception as e:
print(f"Error during chat completion: {e}")
yield "An error occurred during the chat completion.", history
def generate_case_outcome(prosecutor_response, defense_response):
prompt = f"Prosecutor's arguments: {prosecutor_response}\n\nDefense's arguments: {defense_response}\n\nProvide details on who won the case and why. Provide reasons for your decision and provide a link to the source of the case."
evaluation = ""
try:
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal expert evaluating the details of the case presented by the prosecution and the defense."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
evaluation += token
except Exception as e:
print(f"Error during case outcome generation: {e}")
return "An error occurred during the case outcome generation."
return evaluation
def determine_outcome(outcome):
prosecutor_count = outcome.split().count("Prosecutor")
defense_count = outcome.split().count("Defense")
if prosecutor_count > defense_count:
return "Prosecutor Wins"
elif defense_count > prosecutor_count:
return "Defense Wins"
else:
return "No clear winner"
# Custom CSS for white background and black text for input and output boxes
custom_css = """
body {
background-color: #ffffff;
color: #000000;
font-family: Arial, sans-serif;
}
.gradio-container {
max-width: 1000px;
margin: 0 auto;
padding: 20px;
background-color: #ffffff;
border: 1px solid #e0e0e0;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #ffffff !important;
border-color: #ffffff !important;
color: #000000 !important;
margin: 5px;
}
.gr-button:hover {
background-color: #ffffff !important;
border-color: #004085 !important;
}
.gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
border-radius: 4px;
border: 1px solid #ced4da;
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
border-color: #ffffff;
outline: 0;
box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
}
#flagging-button {
display: none;
}
footer {
display: none;
}
.chatbox .chat-container .chat-message {
background-color: #ffffff !important;
color: #000000 !important;
}
.chatbox .chat-container .chat-message-input {
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-markdown {
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
color: #000000 !important;
}
.score-box {
width: 60px;
height: 60px;
display: flex;
align-items: center;
justify-content: center;
font-size: 12px;
font-weight: bold;
color: black;
margin: 5px;
}
.scroll-box {
max-height: 200px;
overflow-y: scroll;
border: 1px solid #ced4da;
padding: 10px;
border-radius: 4px;
}
"""
def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
shared_history.append(f"Prosecutor: {response1}")
shared_history.append(f"Defense Attorney: {response2}")
max_length = max(len(response1), len(response2))
response1 = response1[:max_length]
response2 = response2[:max_length]
outcome = generate_case_outcome(response1, response2)
winner = determine_outcome(outcome)
return response1, response2, history1, history2, shared_history, outcome
def get_top_5_cases():
prompt = "List 5 random high-profile legal cases that have received significant media attention and are currently ongoing. Just a list of case names and numbers."
response = ""
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal research expert, able to provide information about high-profile legal cases."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
return response
def add_message(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=True)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def reset_conversation():
return [], [], "", "", ""
def save_conversation(history1, history2, shared_history):
return history1, history2, shared_history
def ask_about_case_outcome(shared_history, question):
prompt = f"Case Outcome: {shared_history}\n\nQuestion: {question}\n\nAnswer:"
response = ""
for message in client.chat_completion(
[{"role": "system", "content": "Give the real case details of the case being argued, from a verifed source."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.7,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
return response
with gr.Blocks(css=custom_css) as demo:
history1 = gr.State([])
history2 = gr.State([])
shared_history = gr.State([])
top_10_cases = gr.State("")
with gr.Tab("Argument Evaluation"):
with gr.Row():
with gr.Column(scale=1):
top_5_btn = gr.Button("Give me the top 5 cases")
top_5_output = gr.Textbox(label="Top 5 Cases", interactive=False, elem_classes=["scroll-box"])
top_5_btn.click(get_top_5_cases, outputs=top_5_output)
with gr.Column(scale=2):
message = gr.Textbox(label="Case to Argue")
system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
max_tokens = gr.State(512)
temperature = gr.State(0.5)
top_p = gr.State(0.95)
with gr.Row():
with gr.Column(scale=4):
prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True, elem_classes=["scroll-box"])
with gr.Column(scale=1):
prosecutor_score_color = gr.HTML()
with gr.Column(scale=4):
defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True, elem_classes=["scroll-box"])
with gr.Column(scale=1):
defense_score_color = gr.HTML()
outcome = gr.Textbox(label="Outcome", interactive=True, elem_classes=["scroll-box"])
with gr.Row():
submit_btn = gr.Button("Argue")
clear_btn = gr.Button("Clear and Reset")
save_btn = gr.Button("Save Conversation")
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, outcome])
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, outcome])
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
with gr.Tab("Case Outcome Chat"):
case_question = gr.Textbox(label="Ask a Question about the Case Outcome")
case_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
ask_case_btn = gr.Button("Ask")
ask_case_btn.click(ask_about_case_outcome, inputs=[shared_history, case_question], outputs=case_answer)
demo.queue()
demo.launch()