Spaces:
Sleeping
Sleeping
File size: 10,747 Bytes
fb37d48 36d7e68 0e133d3 ed6ee30 af62734 d625ced af62734 36d7e68 0e133d3 af62734 d625ced 36d7e68 8b780e6 af62734 3ebfdcb 8b780e6 36d7e68 8b780e6 36d7e68 8b780e6 36d7e68 8b780e6 af62734 36d7e68 a33e195 ff643c7 a33e195 af62734 a33e195 36d7e68 af62734 ff643c7 a5673c7 ff643c7 a5673c7 a33e195 a5673c7 36d7e68 ef181e9 36d7e68 a5673c7 36d7e68 d205403 36d7e68 a33e195 af62734 a33e195 af62734 ab05725 114dca1 80942ac cbb7771 80942ac 018293e 7039cd5 cbb7771 7039cd5 9a3a8b0 0e133d3 a5673c7 80942ac 114dca1 80942ac 114dca1 80942ac a5673c7 36d7e68 018293e d205403 114dca1 018293e 114dca1 018293e 114dca1 a5673c7 018293e af62734 018293e 36d7e68 80942ac 7039cd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
os.system('pip install PyMuPDF')
os.system('pip install PyPDF2')
os.system('pip install pdf2image')
os.system('pip install gradio_pdf')
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM
from datasets import load_dataset
import fitz # PyMuPDF
from pathlib import Path
dir_ = Path(__file__).parent
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
# Load the BERT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-uncased")
# Create the fill-mask pipeline
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
try:
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
if token is not None:
response += token
yield response, history + [(message, response)]
except Exception as e:
print(f"Error during chat completion: {e}")
yield "An error occurred during the chat completion.", history
def generate_case_outcome(prosecutor_response, defense_response):
prompt = f"Prosecutor's arguments: {prosecutor_response}\n\nDefense's arguments: {defense_response}\n\nProvide details on who won the case and why. Provide reasons for your decision and provide a link to the source of the case."
evaluation = ""
try:
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal expert evaluating the details of the case presented by the prosecution and the defense."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
evaluation += token
except Exception as e:
print(f"Error during case outcome generation: {e}")
return "An error occurred during the case outcome generation."
return evaluation
def determine_outcome(outcome):
prosecutor_count = outcome.split().count("Prosecutor")
defense_count = outcome.split().count("Defense")
if prosecutor_count > defense_count:
return "Prosecutor Wins"
elif defense_count > prosecutor_count:
return "Defense Wins"
else:
return "No clear winner"
# Custom CSS for white background and black text for input and output boxes
custom_css = """
body {
background-color: #ffffff;
color: #000000;
font-family: Arial, sans-serif;
}
.gradio-container {
max-width: 1000px;
margin: 0 auto;
padding: 20px;
background-color: #ffffff;
border: 1px solid #e0e0e0;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #ffffff !important;
border-color: #ffffff !important;
color: #000000 !important;
margin: 5px;
}
.gr-button:hover {
background-color: #ffffff !important;
border-color: #004085 !important;
}
.gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
border-radius: 4px;
border: 1px solid #ced4da;
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
border-color: #ffffff;
outline: 0;
box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
}
#flagging-button {
display: none;
}
footer {
display: none;
}
.chatbox .chat-container .chat-message {
background-color: #ffffff !important;
color: #000000 !important;
}
.chatbox .chat-container .chat-message-input {
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-markdown {
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
color: #000000 !important;
}
.score-box {
width: 60px;
height: 60px;
display: flex;
align-items: center;
justify-content: center;
font-size: 12px;
font-weight: bold;
color: black;
margin: 5px;
}
.scroll-box {
max-height: 200px;
overflow-y: scroll;
border: 1px solid #ced4da;
padding: 10px;
border-radius: 4px;
}
"""
def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
shared_history.append(f"Prosecutor: {response1}")
shared_history.append(f"Defense Attorney: {response2}")
max_length = max(len(response1), len(response2))
response1 = response1[:max_length]
response2 = response2[:max_length]
outcome = generate_case_outcome(response1, response2)
winner = determine_outcome(outcome)
return response1, response2, history1, history2, shared_history, outcome
def get_top_5_cases():
prompt = "List 5 random high-profile legal cases that have received significant media attention and are currently ongoing. Just a list of case names and numbers."
response = ""
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal research expert, able to provide information about high-profile legal cases."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
return response
def add_message(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=True)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def reset_conversation():
return [], [], "", "", ""
def save_conversation(history1, history2, shared_history):
return history1, history2, shared_history
def ask_about_case_outcome(shared_history, question):
prompt = f"Case Outcome: {shared_history}\n\nQuestion: {question}\n\nAnswer:"
response = ""
for message in client.chat_completion(
[{"role": "system", "content": "Give the real case details of the case being argued, from a verifed source."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.7,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
return response
with gr.Blocks(css=custom_css) as demo:
history1 = gr.State([])
history2 = gr.State([])
shared_history = gr.State([])
top_10_cases = gr.State("")
with gr.Tab("Argument Evaluation"):
with gr.Row():
with gr.Column(scale=1):
top_5_btn = gr.Button("Give me the top 5 cases")
top_5_output = gr.Textbox(label="Top 5 Cases", interactive=False, elem_classes=["scroll-box"])
top_5_btn.click(get_top_5_cases, outputs=top_5_output)
with gr.Column(scale=2):
message = gr.Textbox(label="Case to Argue")
system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
max_tokens = gr.State(512)
temperature = gr.State(0.5)
top_p = gr.State(0.95)
with gr.Row():
with gr.Column(scale=4):
prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True, elem_classes=["scroll-box"])
with gr.Column(scale=1):
prosecutor_score_color = gr.HTML()
with gr.Column(scale=4):
defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True, elem_classes=["scroll-box"])
with gr.Column(scale=1):
defense_score_color = gr.HTML()
outcome = gr.Textbox(label="Outcome", interactive=True, elem_classes=["scroll-box"])
with gr.Row():
submit_btn = gr.Button("Argue")
clear_btn = gr.Button("Clear and Reset")
save_btn = gr.Button("Save Conversation")
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, outcome])
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, outcome])
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
with gr.Tab("Case Outcome Chat"):
case_question = gr.Textbox(label="Ask a Question about the Case Outcome")
case_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
ask_case_btn = gr.Button("Ask")
ask_case_btn.click(ask_about_case_outcome, inputs=[shared_history, case_question], outputs=case_answer)
demo.queue()
demo.launch()
|