File size: 10,747 Bytes
fb37d48
36d7e68
 
 
 
0e133d3
ed6ee30
af62734
 
d625ced
 
 
af62734
36d7e68
0e133d3
af62734
 
 
d625ced
36d7e68
8b780e6
af62734
 
 
 
 
 
3ebfdcb
8b780e6
 
36d7e68
 
 
 
 
 
 
 
8b780e6
36d7e68
8b780e6
 
 
 
 
36d7e68
8b780e6
 
af62734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36d7e68
a33e195
ff643c7
a33e195
af62734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33e195
36d7e68
af62734
ff643c7
 
 
a5673c7
ff643c7
a5673c7
a33e195
a5673c7
36d7e68
ef181e9
36d7e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5673c7
36d7e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d205403
 
 
 
 
 
 
36d7e68
 
 
 
 
 
 
 
 
 
 
 
a33e195
af62734
a33e195
af62734
ab05725
114dca1
 
80942ac
 
cbb7771
80942ac
 
 
 
 
 
 
 
 
 
018293e
7039cd5
 
 
 
 
cbb7771
7039cd5
9a3a8b0
 
 
0e133d3
 
 
 
 
 
a5673c7
80942ac
 
 
114dca1
80942ac
 
 
114dca1
80942ac
 
 
 
 
 
a5673c7
36d7e68
 
 
 
018293e
 
d205403
 
 
114dca1
 
 
018293e
 
 
 
 
114dca1
018293e
 
 
 
 
 
 
 
 
 
 
 
 
114dca1
a5673c7
 
 
 
 
018293e
af62734
 
018293e
36d7e68
80942ac
 
 
 
 
 
7039cd5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
os.system('pip install PyMuPDF')
os.system('pip install PyPDF2')
os.system('pip install pdf2image')
os.system('pip install gradio_pdf')

import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM
from datasets import load_dataset
import fitz  # PyMuPDF
from pathlib import Path

dir_ = Path(__file__).parent

dataset = load_dataset("ibunescu/qa_legal_dataset_train")

# Load the BERT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-uncased")

# Create the fill-mask pipeline
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer)

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    try:
        response = ""
        for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = message.choices[0].delta.content
            if token is not None:
                response += token
            yield response, history + [(message, response)]
    except Exception as e:
        print(f"Error during chat completion: {e}")
        yield "An error occurred during the chat completion.", history

def generate_case_outcome(prosecutor_response, defense_response):
    prompt = f"Prosecutor's arguments: {prosecutor_response}\n\nDefense's arguments: {defense_response}\n\nProvide details on who won the case and why. Provide reasons for your decision and provide a link to the source of the case."
    evaluation = ""
    try:
        for message in client.chat_completion(
            [{"role": "system", "content": "You are a legal expert evaluating the details of the case presented by the prosecution and the defense."},
             {"role": "user", "content": prompt}],
            max_tokens=512,
            stream=True,
            temperature=0.6,
            top_p=0.95,
        ):
            token = message.choices[0].delta.content
            if token is not None:
                evaluation += token
    except Exception as e:
        print(f"Error during case outcome generation: {e}")
        return "An error occurred during the case outcome generation."
    return evaluation

def determine_outcome(outcome):
    prosecutor_count = outcome.split().count("Prosecutor")
    defense_count = outcome.split().count("Defense")
    if prosecutor_count > defense_count:
        return "Prosecutor Wins"
    elif defense_count > prosecutor_count:
        return "Defense Wins"
    else:
        return "No clear winner"

# Custom CSS for white background and black text for input and output boxes
custom_css = """
body {
    background-color: #ffffff;
    color: #000000;
    font-family: Arial, sans-serif;
}
.gradio-container {
    max-width: 1000px;
    margin: 0 auto;
    padding: 20px;
    background-color: #ffffff;
    border: 1px solid #e0e0e0;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
.gr-button {
    background-color: #ffffff !important;
    border-color: #ffffff !important;
    color: #000000 !important;
    margin: 5px;
}
.gr-button:hover {
    background-color: #ffffff !important;
    border-color: #004085 !important;
}
.gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
    border-radius: 4px;
    border: 1px solid #ced4da;
    background-color: #ffffff !important;
    color: #000000 !important;
}
.gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
    border-color: #ffffff;
    outline: 0;
    box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
}
#flagging-button {
    display: none;
}
footer {
    display: none;
}
.chatbox .chat-container .chat-message {
    background-color: #ffffff !important;
    color: #000000 !important;
}
.chatbox .chat-container .chat-message-input {
    background-color: #ffffff !important;
    color: #000000 !important;
}
.gr-markdown {
    background-color: #ffffff !important;
    color: #000000 !important;
}
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
    color: #000000 !important;
}
.score-box {
    width: 60px;
    height: 60px;
    display: flex;
    align-items: center;
    justify-content: center;
    font-size: 12px;
    font-weight: bold;
    color: black;
    margin: 5px;
}
.scroll-box {
    max-height: 200px;
    overflow-y: scroll;
    border: 1px solid #ced4da;
    padding: 10px;
    border-radius: 4px;
}
"""

def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
    response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
    response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
    shared_history.append(f"Prosecutor: {response1}")
    shared_history.append(f"Defense Attorney: {response2}")
    
    max_length = max(len(response1), len(response2))
    response1 = response1[:max_length]
    response2 = response2[:max_length]
    
    outcome = generate_case_outcome(response1, response2)
    winner = determine_outcome(outcome)
    
    return response1, response2, history1, history2, shared_history, outcome

def get_top_5_cases():
    prompt = "List 5 random high-profile legal cases that have received significant media attention and are currently ongoing. Just a list of case names and numbers."
    response = ""
    for message in client.chat_completion(
        [{"role": "system", "content": "You are a legal research expert, able to provide information about high-profile legal cases."},
         {"role": "user", "content": prompt}],
        max_tokens=512,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
    return response

def add_message(history, message):
    for x in message["files"]:
        history.append(((x,), None))
    if message["text"] is not None:
        history.append((message["text"], None))
    return history, gr.MultimodalTextbox(value=None, interactive=True)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def reset_conversation():
    return [], [], "", "", ""

def save_conversation(history1, history2, shared_history):
    return history1, history2, shared_history

def ask_about_case_outcome(shared_history, question):
    prompt = f"Case Outcome: {shared_history}\n\nQuestion: {question}\n\nAnswer:"
    response = ""
    for message in client.chat_completion(
        [{"role": "system", "content": "Give the real case details of the case being argued, from a verifed source."},
         {"role": "user", "content": prompt}],
        max_tokens=512,
        stream=True,
        temperature=0.7,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
    return response

with gr.Blocks(css=custom_css) as demo:
    history1 = gr.State([])
    history2 = gr.State([])
    shared_history = gr.State([])
    top_10_cases = gr.State("")

    with gr.Tab("Argument Evaluation"):
        with gr.Row():
            with gr.Column(scale=1):
                top_5_btn = gr.Button("Give me the top 5 cases")
                top_5_output = gr.Textbox(label="Top 5 Cases", interactive=False, elem_classes=["scroll-box"])
                top_5_btn.click(get_top_5_cases, outputs=top_5_output)
            with gr.Column(scale=2):
                message = gr.Textbox(label="Case to Argue")
                system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
                system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
                max_tokens = gr.State(512)
                temperature = gr.State(0.5)
                top_p = gr.State(0.95)
                
                with gr.Row():
                    with gr.Column(scale=4):
                        prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True, elem_classes=["scroll-box"])
                    with gr.Column(scale=1):
                        prosecutor_score_color = gr.HTML()
                    
                    with gr.Column(scale=4):
                        defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True, elem_classes=["scroll-box"])
                    with gr.Column(scale=1):
                        defense_score_color = gr.HTML()
                
                outcome = gr.Textbox(label="Outcome", interactive=True, elem_classes=["scroll-box"])
                
                with gr.Row():
                    submit_btn = gr.Button("Argue")
                    clear_btn = gr.Button("Clear and Reset")
                    save_btn = gr.Button("Save Conversation")
                
                submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, outcome])
                clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, outcome])
                save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
    
    with gr.Tab("Case Outcome Chat"):
        case_question = gr.Textbox(label="Ask a Question about the Case Outcome")
        case_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
        ask_case_btn = gr.Button("Ask")

        ask_case_btn.click(ask_about_case_outcome, inputs=[shared_history, case_question], outputs=case_answer)

demo.queue()
demo.launch()