Hawkeye_AI / app.py
michaelmc1618's picture
Update app.py
80942ac verified
raw
history blame
13.3 kB
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
os.system('pip install PyMuPDF')
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
from datasets import load_dataset
import fitz # PyMuPDF
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
# Use a pipeline as a high-level helper
pipe = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
if token is not None:
response += token
yield response, history + [(message, response)]
def generate_case_outcome(prosecutor_response, defense_response):
prompt = f"Prosecutor's Argument: {prosecutor_response}\nDefense Attorney's Argument: {defense_response}\n\nEvaluate both arguments, point out the strengths and weaknesses, and determine who won the case. Provide reasons for your decision."
evaluation = ""
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal expert evaluating the arguments presented by the prosecution and the defense."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
evaluation += token
return evaluation
def determine_winner(outcome):
if "Prosecutor" in outcome and "Defense" in outcome:
if "Prosecutor" in outcome.split().count("Prosecutor") > outcome.split().count("Defense"):
return "Prosecutor Wins"
else:
return "Defense Wins"
elif "Prosecutor" in outcome:
return "Prosecutor Wins"
elif "Defense" in outcome:
return "Defense Wins"
else:
return "No clear winner"
# Custom CSS for white background and black text for input and output boxes
custom_css = """
body {
background-color: #ffffff;
color: #000000;
font-family: Arial, sans-serif;
}
.gradio-container {
max-width: 1000px;
margin: 0 auto;
padding: 20px;
background-color: #ffffff;
border: 1px solid #e0e0e0;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #ffffff !important;
border-color: #ffffff !important;
color: #000000 !important;
margin: 5px;
}
.gr-button:hover {
background-color: #ffffff !important;
border-color: #004085 !important;
}
.gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
border-radius: 4px;
border: 1px solid #ced4da;
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
border-color: #ffffff;
outline: 0;
box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
}
#flagging-button {
display: none;
}
footer {
display: none;
}
.chatbox .chat-container .chat-message {
background-color: #ffffff !important;
color: #000000 !important;
}
.chatbox .chat-container .chat-message-input {
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-markdown {
background-color: #ffffff !important;
color: #000000 !important;
}
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
color: #000000 !important;
}
.score-box {
width: 60px;
height: 60px;
display: flex;
align-items: center;
justify-content: center;
font-size: 12px;
font-weight: bold;
color: black;
margin: 5px;
}
.scroll-box {
max-height: 200px;
overflow-y: scroll;
border: 1px solid #ced4da;
padding: 10px;
border-radius: 4px;
}
"""
def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
shared_history.append(f"Prosecutor: {response1}")
shared_history.append(f"Defense Attorney: {response2}")
max_length = max(len(response1), len(response2))
response1 = response1[:max_length]
response2 = response2[:max_length]
outcome = generate_case_outcome(response1, response2)
winner = determine_winner(outcome)
return response1, response2, history1, history2, shared_history, outcome, winner
def extract_text_from_pdf(pdf_file):
text = ""
doc = fitz.open(pdf_file)
for page in doc:
text += page.get_text()
return text
def ask_about_pdf(pdf_text, question):
prompt = f"PDF Content: {pdf_text}\n\nQuestion: {question}\n\nAnswer:"
response = ""
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal expert answering questions based on the PDF content provided."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
return response
def update_pdf_gallery_and_extract_text(pdf_files):
if len(pdf_files) > 0:
pdf_text = extract_text_from_pdf(pdf_files[0].name)
else:
pdf_text = ""
return pdf_files, pdf_text
def get_top_10_cases():
prompt = "Give me a list of the current top 10 cases in the country being discussed by the top lawyers in the country."
response = ""
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal expert providing information about top legal cases."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
return response
def add_message(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
def bot(history):
system_message = "You are a helpful assistant."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
response = ""
for message in client.chat_completion(
messages,
max_tokens=150,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
history[-1][1] = response
yield history
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def reset_conversation():
return [], [], "", "", ""
def save_conversation(history1, history2, shared_history):
return history1, history2, shared_history
def ask_about_case_outcome(shared_history, question):
prompt = f"Case Outcome: {shared_history}\n\nQuestion: {question}\n\nAnswer:"
response = ""
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal expert answering questions based on the case outcome provided."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
return response
with gr.Blocks(css=custom_css) as demo:
history1 = gr.State([])
history2 = gr.State([])
shared_history = gr.State([])
pdf_files = gr.State([])
pdf_text = gr.State("")
top_10_cases = gr.State("")
with gr.Tab("Argument Evaluation"):
with gr.Row():
with gr.Column(scale=1):
top_10_btn = gr.Button("Give me the top 10 cases")
top_10_output = gr.Textbox(label="Top 10 Cases", interactive=False, elem_classes=["scroll-box"])
top_10_btn.click(get_top_10_cases, outputs=top_10_output)
with gr.Column(scale=2):
message = gr.Textbox(label="Case to Argue")
system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
max_tokens = gr.State(512)
temperature = gr.State(0.6)
top_p = gr.State(0.95)
with gr.Row():
with gr.Column(scale=4):
prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True, elem_classes=["scroll-box"])
with gr.Column(scale=1):
prosecutor_score_color = gr.HTML()
with gr.Column(scale=4):
defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True, elem_classes=["scroll-box"])
with gr.Column(scale=1):
defense_score_color = gr.HTML()
shared_argument = gr.Textbox(label="Case Outcome", interactive=True, elem_classes=["scroll-box"])
winner = gr.Textbox(label="Winner", interactive=False, elem_classes=["scroll-box"])
with gr.Row():
submit_btn = gr.Button("Argue")
clear_btn = gr.Button("Clear and Reset")
save_btn = gr.Button("Save Conversation")
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_argument, winner])
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, shared_argument, winner])
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
with gr.Tab("PDF Management"):
pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
pdf_gallery = gr.Gallery(label="PDF Gallery")
pdf_view = gr.Textbox(label="PDF Content", interactive=False, elem_classes=["scroll-box"])
pdf_question = gr.Textbox(label="Ask a Question about the PDF")
pdf_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
pdf_upload_btn = gr.Button("Update PDF Gallery")
pdf_ask_btn = gr.Button("Ask")
pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text])
pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view)
pdf_ask_btn.click(ask_about_pdf, inputs=[pdf_text, pdf_question], outputs=pdf_answer)
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False
)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
with gr.Tab("Case Outcome Chat"):
case_question = gr.Textbox(label="Ask a Question about the Case Outcome")
case_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
ask_case_btn = gr.Button("Ask")
ask_case_btn.click(ask_about_case_outcome, inputs=[shared_history, case_question], outputs=case_answer)
demo.queue()
demo.launch()