File size: 13,257 Bytes
fb37d48
36d7e68
 
 
 
0e133d3
d625ced
 
 
36d7e68
 
0e133d3
d625ced
36d7e68
8b780e6
80942ac
 
3ebfdcb
8b780e6
 
36d7e68
 
 
 
 
 
 
 
8b780e6
36d7e68
8b780e6
 
 
 
 
36d7e68
8b780e6
 
 
 
 
 
 
 
 
 
 
36d7e68
 
 
 
a33e195
a5673c7
a33e195
 
 
 
 
 
 
 
 
 
 
 
 
36d7e68
a5673c7
 
80942ac
a5673c7
 
 
 
 
 
 
a33e195
a5673c7
36d7e68
ef181e9
36d7e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5673c7
36d7e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d205403
 
 
 
 
 
 
36d7e68
 
 
 
 
 
 
 
 
 
 
 
a33e195
a5673c7
a33e195
a5673c7
ab05725
0e133d3
 
 
 
 
 
 
 
80942ac
 
 
 
 
 
 
 
 
 
 
 
 
 
0e133d3
 
 
 
 
 
 
699815d
018293e
80942ac
 
 
 
 
 
 
 
 
 
 
 
 
 
018293e
7039cd5
 
 
 
 
 
 
 
0e133d3
 
 
 
 
 
 
 
 
 
c705ca2
0e133d3
 
 
 
 
 
 
 
7039cd5
 
9a3a8b0
 
 
0e133d3
 
 
 
 
 
a5673c7
80942ac
 
 
 
 
 
 
 
 
 
 
 
 
 
a5673c7
36d7e68
 
 
 
699815d
0e133d3
018293e
 
d205403
 
 
c705ca2
 
018293e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5673c7
 
 
 
 
 
 
018293e
a5673c7
 
018293e
36d7e68
d205403
 
 
0e133d3
 
 
d205403
0e133d3
 
 
 
 
36d7e68
d205403
 
 
 
 
 
7039cd5
d205403
7039cd5
d205403
 
 
7039cd5
d205403
80942ac
 
 
 
 
 
 
7039cd5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
os.system('pip install PyMuPDF')

import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
from datasets import load_dataset
import fitz  # PyMuPDF

dataset = load_dataset("ibunescu/qa_legal_dataset_train")

# Use a pipeline as a high-level helper
pipe = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
        yield response, history + [(message, response)]

def generate_case_outcome(prosecutor_response, defense_response):
    prompt = f"Prosecutor's Argument: {prosecutor_response}\nDefense Attorney's Argument: {defense_response}\n\nEvaluate both arguments, point out the strengths and weaknesses, and determine who won the case. Provide reasons for your decision."
    evaluation = ""
    for message in client.chat_completion(
        [{"role": "system", "content": "You are a legal expert evaluating the arguments presented by the prosecution and the defense."},
         {"role": "user", "content": prompt}],
        max_tokens=512,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            evaluation += token
    return evaluation

def determine_winner(outcome):
    if "Prosecutor" in outcome and "Defense" in outcome:
        if "Prosecutor" in outcome.split().count("Prosecutor") > outcome.split().count("Defense"):
            return "Prosecutor Wins"
        else:
            return "Defense Wins"
    elif "Prosecutor" in outcome:
        return "Prosecutor Wins"
    elif "Defense" in outcome:
        return "Defense Wins"
    else:
        return "No clear winner"

# Custom CSS for white background and black text for input and output boxes
custom_css = """
body {
    background-color: #ffffff;
    color: #000000;
    font-family: Arial, sans-serif;
}
.gradio-container {
    max-width: 1000px;
    margin: 0 auto;
    padding: 20px;
    background-color: #ffffff;
    border: 1px solid #e0e0e0;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
.gr-button {
    background-color: #ffffff !important;
    border-color: #ffffff !important;
    color: #000000 !important;
    margin: 5px;
}
.gr-button:hover {
    background-color: #ffffff !important;
    border-color: #004085 !important;
}
.gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
    border-radius: 4px;
    border: 1px solid #ced4da;
    background-color: #ffffff !important;
    color: #000000 !important;
}
.gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
    border-color: #ffffff;
    outline: 0;
    box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
}
#flagging-button {
    display: none;
}
footer {
    display: none;
}
.chatbox .chat-container .chat-message {
    background-color: #ffffff !important;
    color: #000000 !important;
}
.chatbox .chat-container .chat-message-input {
    background-color: #ffffff !important;
    color: #000000 !important;
}
.gr-markdown {
    background-color: #ffffff !important;
    color: #000000 !important;
}
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
    color: #000000 !important;
}
.score-box {
    width: 60px;
    height: 60px;
    display: flex;
    align-items: center;
    justify-content: center;
    font-size: 12px;
    font-weight: bold;
    color: black;
    margin: 5px;
}
.scroll-box {
    max-height: 200px;
    overflow-y: scroll;
    border: 1px solid #ced4da;
    padding: 10px;
    border-radius: 4px;
}
"""

def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
    response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
    response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
    shared_history.append(f"Prosecutor: {response1}")
    shared_history.append(f"Defense Attorney: {response2}")
    
    max_length = max(len(response1), len(response2))
    response1 = response1[:max_length]
    response2 = response2[:max_length]
    
    outcome = generate_case_outcome(response1, response2)
    winner = determine_winner(outcome)
    
    return response1, response2, history1, history2, shared_history, outcome, winner

def extract_text_from_pdf(pdf_file):
    text = ""
    doc = fitz.open(pdf_file)
    for page in doc:
        text += page.get_text()
    return text

def ask_about_pdf(pdf_text, question):
    prompt = f"PDF Content: {pdf_text}\n\nQuestion: {question}\n\nAnswer:"
    response = ""
    for message in client.chat_completion(
        [{"role": "system", "content": "You are a legal expert answering questions based on the PDF content provided."},
         {"role": "user", "content": prompt}],
        max_tokens=512,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
    return response

def update_pdf_gallery_and_extract_text(pdf_files):
    if len(pdf_files) > 0:
        pdf_text = extract_text_from_pdf(pdf_files[0].name)
    else:
        pdf_text = ""
    return pdf_files, pdf_text

def get_top_10_cases():
    prompt = "Give me a list of the current top 10 cases in the country being discussed by the top lawyers in the country."
    response = ""
    for message in client.chat_completion(
        [{"role": "system", "content": "You are a legal expert providing information about top legal cases."},
         {"role": "user", "content": prompt}],
        max_tokens=512,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
    return response

def add_message(history, message):
    for x in message["files"]:
        history.append(((x,), None))
    if message["text"] is not None:
        history.append((message["text"], None))
    return history, gr.MultimodalTextbox(value=None, interactive=False)

def bot(history):
    system_message = "You are a helpful assistant."
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=150,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
        history[-1][1] = response
        yield history

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def reset_conversation():
    return [], [], "", "", ""

def save_conversation(history1, history2, shared_history):
    return history1, history2, shared_history

def ask_about_case_outcome(shared_history, question):
    prompt = f"Case Outcome: {shared_history}\n\nQuestion: {question}\n\nAnswer:"
    response = ""
    for message in client.chat_completion(
        [{"role": "system", "content": "You are a legal expert answering questions based on the case outcome provided."},
         {"role": "user", "content": prompt}],
        max_tokens=512,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
    return response

with gr.Blocks(css=custom_css) as demo:
    history1 = gr.State([])
    history2 = gr.State([])
    shared_history = gr.State([])
    pdf_files = gr.State([])
    pdf_text = gr.State("")
    top_10_cases = gr.State("")

    with gr.Tab("Argument Evaluation"):
        with gr.Row():
            with gr.Column(scale=1):
                top_10_btn = gr.Button("Give me the top 10 cases")
                top_10_output = gr.Textbox(label="Top 10 Cases", interactive=False, elem_classes=["scroll-box"])
                top_10_btn.click(get_top_10_cases, outputs=top_10_output)
            with gr.Column(scale=2):
                message = gr.Textbox(label="Case to Argue")
                system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
                system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
                max_tokens = gr.State(512)
                temperature = gr.State(0.6)
                top_p = gr.State(0.95)
                
                with gr.Row():
                    with gr.Column(scale=4):
                        prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True, elem_classes=["scroll-box"])
                    with gr.Column(scale=1):
                        prosecutor_score_color = gr.HTML()
                    
                    with gr.Column(scale=4):
                        defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True, elem_classes=["scroll-box"])
                    with gr.Column(scale=1):
                        defense_score_color = gr.HTML()
                
                shared_argument = gr.Textbox(label="Case Outcome", interactive=True, elem_classes=["scroll-box"])
                winner = gr.Textbox(label="Winner", interactive=False, elem_classes=["scroll-box"])
                
                with gr.Row():
                    submit_btn = gr.Button("Argue")
                    clear_btn = gr.Button("Clear and Reset")
                    save_btn = gr.Button("Save Conversation")
                
                submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_argument, winner])
                clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, shared_argument, winner])
                save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
    
    with gr.Tab("PDF Management"):
        pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
        pdf_gallery = gr.Gallery(label="PDF Gallery")
        pdf_view = gr.Textbox(label="PDF Content", interactive=False, elem_classes=["scroll-box"])
        pdf_question = gr.Textbox(label="Ask a Question about the PDF")
        pdf_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
        pdf_upload_btn = gr.Button("Update PDF Gallery")
        pdf_ask_btn = gr.Button("Ask")

        pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text])
        pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view)
        pdf_ask_btn.click(ask_about_pdf, inputs=[pdf_text, pdf_question], outputs=pdf_answer)
    
    with gr.Tab("Chatbot"):
        chatbot = gr.Chatbot(
            [],
            elem_id="chatbot",
            bubble_full_width=False
        )

        chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)

        chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
        bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
        bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])

        chatbot.like(print_like_dislike, None, None)
    
    with gr.Tab("Case Outcome Chat"):
        case_question = gr.Textbox(label="Ask a Question about the Case Outcome")
        case_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
        ask_case_btn = gr.Button("Ask")

        ask_case_btn.click(ask_about_case_outcome, inputs=[shared_history, case_question], outputs=case_answer)

demo.queue()
demo.launch()