Hawkeye_AI / app.py
michaelmc1618's picture
Update app.py
d716ab3 verified
raw
history blame
5.75 kB
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
os.system('pip install PyMuPDF')
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
from datasets import load_dataset
import fitz # PyMuPDF
client = InferenceClient()
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
def score_argument_from_outcome(outcome, argument):
prosecutor_score = 0
if "Prosecutor" in outcome:
prosecutor_score = outcome.count("Prosecutor") * 2
if "won" in outcome and "Prosecutor" in outcome:
prosecutor_score += 10
return prosecutor_score
def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
return response1, response2, history1, history2, shared_history
def extract_text_from_pdf(pdf_file):
text = ""
doc = fitz.open(pdf_file)
for page in doc:
text += page.get_text()
return text
def ask_about_pdf(pdf_text, question):
prompt = f"PDF Content: {pdf_text}\n\nQuestion: {question}\n\nAnswer:"
response = ""
for message in client.chat_completion(
[{"role": "system", "content": "You are a legal expert answering questions based on the PDF content provided."},
{"role": "user", "content": prompt}],
max_tokens=512,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
return response
def update_pdf_gallery_and_extract_text(pdf_files):
if len(pdf_files) > 0:
pdf_text = extract_text_from_pdf(pdf_files[0].name)
else:
pdf_text = ""
return pdf_files, pdf_text
def add_message(history, message):
history.append(message)
return history, gr.Textbox(value=None, interactive=False)
def bot(history):
system_message = "You are a helpful assistant."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
response = ""
for message in client.chat_completion(
messages,
max_tokens=150,
stream=True,
temperature=0.6,
top_p=0.95,
):
token = message.choices[0].delta.content
if token is not None:
response += token
history[-1][1] = response
yield history
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def reset_conversation():
return [], [], "", "", ""
def save_conversation(history1, history2, shared_history):
return history1, history2, shared_history
custom_css = """
.scroll-box {
max-height: 400px;
overflow-y: auto;
}
"""
with gr.Blocks(css=custom_css) as demo:
history1 = gr.State([])
history2 = gr.State([])
shared_history = gr.State([])
pdf_files = gr.State([])
pdf_text = gr.State("")
with gr.Tab("Argument Evaluation"):
message = gr.Textbox(label="Case to Argue")
system_message1 = "System message for bot 1"
system_message2 = "System message for bot 2"
max_tokens = 150
temperature = 0.6
top_p = 0.95
prosecutor_response = gr.Textbox(label="Prosecutor Response", interactive=False)
defense_response = gr.Textbox(label="Defense Response", interactive=False)
prosecutor_score_color = gr.Textbox(label="Prosecutor Score Color", interactive=False)
defense_score_color = gr.Textbox(label="Defense Score Color", interactive=False)
shared_argument = gr.Textbox(label="Case Outcome", interactive=True)
submit_btn = gr.Button("Argue")
clear_btn = gr.Button("Clear and Reset")
save_btn = gr.Button("Save Conversation")
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_argument, prosecutor_score_color, defense_score_color])
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, shared_argument])
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
with gr.Tab("PDF Management"):
pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
pdf_gallery = gr.Gallery(label="PDF Gallery")
pdf_view = gr.Textbox(label="PDF Content", interactive=False, elem_classes=["scroll-box"])
pdf_question = gr.Textbox(label="Ask a Question about the PDF")
pdf_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
pdf_upload_btn = gr.Button("Update PDF Gallery")
pdf_ask_btn = gr.Button("Ask")
pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text])
pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view)
pdf_ask_btn.click(ask_about_pdf, inputs=[pdf_text, pdf_question], outputs=pdf_answer)
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot()
demo.launch()