File size: 5,753 Bytes
fb37d48
36d7e68
 
 
 
0e133d3
d625ced
 
 
4194261
36d7e68
0e133d3
af62734
d716ab3
8b780e6
d716ab3
36d7e68
4f4bbd6
d716ab3
4f4bbd6
 
 
d716ab3
 
4f4bbd6
36d7e68
 
 
 
d716ab3
4f4bbd6
 
 
 
 
 
 
ab05725
4f4bbd6
 
80942ac
 
4f4bbd6
80942ac
 
 
 
 
 
 
 
 
 
018293e
4f4bbd6
 
 
 
 
 
 
7039cd5
d716ab3
 
7039cd5
4f4bbd6
 
 
 
 
 
 
 
80942ac
 
4f4bbd6
 
80942ac
4f4bbd6
80942ac
 
 
 
 
4f4bbd6
 
 
 
 
 
 
 
 
 
 
a5673c7
d716ab3
 
 
 
 
 
 
36d7e68
 
 
 
4f4bbd6
 
 
d205403
4f4bbd6
d716ab3
 
 
 
 
4f4bbd6
d716ab3
 
 
 
4f4bbd6
d716ab3
4f4bbd6
 
 
 
 
 
 
36d7e68
4f4bbd6
 
 
 
 
 
 
 
d716ab3
4f4bbd6
 
 
 
 
d716ab3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
os.system('pip install PyMuPDF')

import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
from datasets import load_dataset
import fitz  # PyMuPDF

client = InferenceClient()

dataset = load_dataset("ibunescu/qa_legal_dataset_train")

def score_argument_from_outcome(outcome, argument):
    prosecutor_score = 0
    if "Prosecutor" in outcome:
        prosecutor_score = outcome.count("Prosecutor") * 2
        if "won" in outcome and "Prosecutor" in outcome:
            prosecutor_score += 10
    return prosecutor_score

def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
    response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
    response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
    
    return response1, response2, history1, history2, shared_history

def extract_text_from_pdf(pdf_file):
    text = ""
    doc = fitz.open(pdf_file)
    for page in doc:
        text += page.get_text()
    return text

def ask_about_pdf(pdf_text, question):
    prompt = f"PDF Content: {pdf_text}\n\nQuestion: {question}\n\nAnswer:"
    response = ""
    for message in client.chat_completion(
        [{"role": "system", "content": "You are a legal expert answering questions based on the PDF content provided."},
         {"role": "user", "content": prompt}],
        max_tokens=512,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
    return response

def update_pdf_gallery_and_extract_text(pdf_files):
    if len(pdf_files) > 0:
        pdf_text = extract_text_from_pdf(pdf_files[0].name)
    else:
        pdf_text = ""
    return pdf_files, pdf_text

def add_message(history, message):
    history.append(message)
    return history, gr.Textbox(value=None, interactive=False)

def bot(history):
    system_message = "You are a helpful assistant."
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=150,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
        history[-1][1] = response
        yield history

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def reset_conversation():
    return [], [], "", "", ""

def save_conversation(history1, history2, shared_history):
    return history1, history2, shared_history

custom_css = """
.scroll-box {
    max-height: 400px;
    overflow-y: auto;
}
"""

with gr.Blocks(css=custom_css) as demo:
    history1 = gr.State([])
    history2 = gr.State([])
    shared_history = gr.State([])
    pdf_files = gr.State([])
    pdf_text = gr.State("")
    
    with gr.Tab("Argument Evaluation"):
        message = gr.Textbox(label="Case to Argue")
        system_message1 = "System message for bot 1"
        system_message2 = "System message for bot 2"
        max_tokens = 150
        temperature = 0.6
        top_p = 0.95
        
        prosecutor_response = gr.Textbox(label="Prosecutor Response", interactive=False)
        defense_response = gr.Textbox(label="Defense Response", interactive=False)
        prosecutor_score_color = gr.Textbox(label="Prosecutor Score Color", interactive=False)
        defense_score_color = gr.Textbox(label="Defense Score Color", interactive=False)
        shared_argument = gr.Textbox(label="Case Outcome", interactive=True)
        
        submit_btn = gr.Button("Argue")
        clear_btn = gr.Button("Clear and Reset")
        save_btn = gr.Button("Save Conversation")
        
        submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_argument, prosecutor_score_color, defense_score_color])
        clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, shared_argument])
        save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
    
    with gr.Tab("PDF Management"):
        pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
        pdf_gallery = gr.Gallery(label="PDF Gallery")
        pdf_view = gr.Textbox(label="PDF Content", interactive=False, elem_classes=["scroll-box"])
        pdf_question = gr.Textbox(label="Ask a Question about the PDF")
        pdf_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
        pdf_upload_btn = gr.Button("Update PDF Gallery")
        pdf_ask_btn = gr.Button("Ask")
        
        pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text])
        pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view)
        pdf_ask_btn.click(ask_about_pdf, inputs=[pdf_text, pdf_question], outputs=pdf_answer)
    
    with gr.Tab("Chatbot"):
        chatbot = gr.Chatbot()
        
demo.launch()