Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,25 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM, AutoProcessor, AutoModelForSpeechSeq2Seq
|
7 |
from huggingface_hub import InferenceClient
|
|
|
8 |
from datasets import load_dataset
|
9 |
import fitz # PyMuPDF
|
10 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
11 |
-
|
12 |
-
# Constants for Whisper ASR
|
13 |
-
MODEL_NAME = "openai/whisper-large-v3"
|
14 |
-
BATCH_SIZE = 8
|
15 |
-
FILE_LIMIT_MB = 1000
|
16 |
-
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
17 |
-
|
18 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
-
# Load
|
21 |
-
|
22 |
-
model_s2s = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# Create the fill-mask pipeline
|
29 |
-
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
30 |
|
|
|
31 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
32 |
|
33 |
def respond(
|
@@ -48,123 +40,49 @@ def respond(
|
|
48 |
|
49 |
messages.append({"role": "user", "content": message})
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
yield response, history + [(message, response)]
|
64 |
-
except Exception as e:
|
65 |
-
print(f"Error during chat completion: {e}")
|
66 |
-
yield "An error occurred during the chat completion.", history
|
67 |
|
68 |
def generate_case_outcome(prosecutor_response, defense_response):
|
69 |
-
prompt = f"Prosecutor's
|
70 |
evaluation = ""
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
evaluation += token
|
83 |
-
except Exception as e:
|
84 |
-
print(f"Error during case outcome generation: {e}")
|
85 |
-
return "An error occurred during the case outcome generation."
|
86 |
return evaluation
|
87 |
|
88 |
-
def
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
return "Prosecutor Wins"
|
93 |
-
elif
|
94 |
return "Defense Wins"
|
95 |
else:
|
96 |
return "No clear winner"
|
97 |
|
98 |
-
|
99 |
-
if inputs is None:
|
100 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
101 |
-
|
102 |
-
inputs = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device)
|
103 |
-
with torch.no_grad():
|
104 |
-
generated_ids = model_s2s.generate(inputs["input_features"])
|
105 |
-
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
106 |
-
|
107 |
-
return transcription
|
108 |
-
|
109 |
-
def _return_yt_html_embed(yt_url):
|
110 |
-
video_id = yt_url.split("?v=")[-1]
|
111 |
-
HTML_str = (
|
112 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
113 |
-
" </center>"
|
114 |
-
)
|
115 |
-
return HTML_str
|
116 |
-
|
117 |
-
def download_yt_audio(yt_url, filename):
|
118 |
-
info_loader = youtube_dl.YoutubeDL()
|
119 |
-
|
120 |
-
try:
|
121 |
-
info = info_loader.extract_info(yt_url, download=False)
|
122 |
-
except youtube_dl.utils.DownloadError as err:
|
123 |
-
raise gr.Error(str(err))
|
124 |
-
|
125 |
-
file_length = info["duration_string"]
|
126 |
-
file_h_m_s = file_length.split(":")
|
127 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
128 |
-
|
129 |
-
if len(file_h_m_s) == 1:
|
130 |
-
file_h_m_s.insert(0, 0)
|
131 |
-
if len(file_h_m_s) == 2:
|
132 |
-
file_h_m_s.insert(0, 0)
|
133 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
134 |
-
|
135 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
136 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
137 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
138 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
139 |
-
|
140 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
141 |
-
|
142 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
143 |
-
try:
|
144 |
-
ydl.download([yt_url])
|
145 |
-
except youtube_dl.utils.ExtractorError as err:
|
146 |
-
raise gr.Error(str(err))
|
147 |
-
|
148 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
149 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
150 |
-
|
151 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
152 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
153 |
-
download_yt_audio(yt_url, filepath)
|
154 |
-
with open(filepath, "rb") as f:
|
155 |
-
inputs = f.read()
|
156 |
-
|
157 |
-
inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate)
|
158 |
-
inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate}
|
159 |
-
|
160 |
-
inputs = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device)
|
161 |
-
with torch.no_grad():
|
162 |
-
generated_ids = model_s2s.generate(inputs["input_features"])
|
163 |
-
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
164 |
-
|
165 |
-
return html_embed_str, transcription
|
166 |
-
|
167 |
-
# Custom CSS for white background and black text for input and output boxes
|
168 |
custom_css = """
|
169 |
body {
|
170 |
background-color: #ffffff;
|
@@ -253,17 +171,63 @@ def chat_between_bots(system_message1, system_message2, max_tokens, temperature,
|
|
253 |
response2 = response2[:max_length]
|
254 |
|
255 |
outcome = generate_case_outcome(response1, response2)
|
256 |
-
winner =
|
257 |
|
258 |
-
return response1, response2, history1, history2, shared_history, outcome
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
def get_top_10_cases():
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
response = ""
|
263 |
for message in client.chat_completion(
|
264 |
-
|
265 |
-
|
266 |
-
max_tokens=512,
|
267 |
stream=True,
|
268 |
temperature=0.6,
|
269 |
top_p=0.95,
|
@@ -271,14 +235,8 @@ def get_top_10_cases():
|
|
271 |
token = message.choices[0].delta.content
|
272 |
if token is not None:
|
273 |
response += token
|
274 |
-
|
275 |
-
|
276 |
-
def add_message(history, message):
|
277 |
-
for x in message["files"]:
|
278 |
-
history.append(((x,), None))
|
279 |
-
if message["text"] is not None:
|
280 |
-
history.append((message["text"], None))
|
281 |
-
return history, gr.MultimodalTextbox(value=None, interactive=True)
|
282 |
|
283 |
def print_like_dislike(x: gr.LikeData):
|
284 |
print(x.index, x.value, x.liked)
|
@@ -290,32 +248,22 @@ def save_conversation(history1, history2, shared_history):
|
|
290 |
return history1, history2, shared_history
|
291 |
|
292 |
def ask_about_case_outcome(shared_history, question):
|
293 |
-
|
294 |
-
|
295 |
-
for message in client.chat_completion(
|
296 |
-
[{"role": "system", "content": "You are a legal expert answering questions based on the case outcome provided."},
|
297 |
-
{"role": "user", "content": prompt}],
|
298 |
-
max_tokens=512,
|
299 |
-
stream=True,
|
300 |
-
temperature=0.6,
|
301 |
-
top_p=0.95,
|
302 |
-
):
|
303 |
-
token = message.choices[0].delta.content
|
304 |
-
if token is not None:
|
305 |
-
response += token
|
306 |
-
return response
|
307 |
|
308 |
with gr.Blocks(css=custom_css) as demo:
|
309 |
history1 = gr.State([])
|
310 |
history2 = gr.State([])
|
311 |
shared_history = gr.State([])
|
|
|
|
|
312 |
top_10_cases = gr.State("")
|
313 |
|
314 |
with gr.Tab("Argument Evaluation"):
|
315 |
with gr.Row():
|
316 |
with gr.Column(scale=1):
|
317 |
top_10_btn = gr.Button("Give me the top 10 cases")
|
318 |
-
top_10_output = gr.
|
319 |
top_10_btn.click(get_top_10_cases, outputs=top_10_output)
|
320 |
with gr.Column(scale=2):
|
321 |
message = gr.Textbox(label="Case to Argue")
|
@@ -336,56 +284,53 @@ with gr.Blocks(css=custom_css) as demo:
|
|
336 |
with gr.Column(scale=1):
|
337 |
defense_score_color = gr.HTML()
|
338 |
|
339 |
-
|
|
|
340 |
|
341 |
with gr.Row():
|
342 |
submit_btn = gr.Button("Argue")
|
343 |
clear_btn = gr.Button("Clear and Reset")
|
344 |
save_btn = gr.Button("Save Conversation")
|
345 |
|
346 |
-
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2,
|
347 |
-
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response,
|
348 |
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
)
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
"Practice your legal arguments by providing a YouTube video link. The arguments will be transcribed for review."
|
377 |
-
),
|
378 |
-
allow_flagging="never",
|
379 |
)
|
380 |
|
381 |
-
gr.
|
382 |
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
ask_case_btn = gr.Button("Ask")
|
387 |
|
388 |
-
|
389 |
|
390 |
demo.queue()
|
391 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
os.system('pip install transformers')
|
3 |
+
os.system('pip install datasets')
|
4 |
+
os.system('pip install gradio')
|
5 |
+
os.system('pip install minijinja')
|
6 |
+
os.system('pip install PyMuPDF')
|
7 |
+
|
8 |
import gradio as gr
|
|
|
9 |
from huggingface_hub import InferenceClient
|
10 |
+
from transformers import pipeline
|
11 |
from datasets import load_dataset
|
12 |
import fitz # PyMuPDF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Load dataset
|
15 |
+
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
|
|
|
16 |
|
17 |
+
# Different pipelines for different tasks
|
18 |
+
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
19 |
+
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn")
|
20 |
+
mask_filling_pipeline = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")
|
|
|
|
|
21 |
|
22 |
+
# Inference client for chat completion
|
23 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
24 |
|
25 |
def respond(
|
|
|
40 |
|
41 |
messages.append({"role": "user", "content": message})
|
42 |
|
43 |
+
response = ""
|
44 |
+
for message in client.chat_completion(
|
45 |
+
messages,
|
46 |
+
max_tokens=max_tokens,
|
47 |
+
stream=True,
|
48 |
+
temperature=temperature,
|
49 |
+
top_p=top_p,
|
50 |
+
):
|
51 |
+
token = message.choices[0].delta.content
|
52 |
+
if token is not None:
|
53 |
+
response += token
|
54 |
+
yield response, history + [(message, response)]
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def generate_case_outcome(prosecutor_response, defense_response):
|
57 |
+
prompt = f"Prosecutor's Argument: {prosecutor_response}\nDefense Attorney's Argument: {defense_response}\n\nEvaluate both arguments, point out the strengths and weaknesses, and determine who won the case. Provide reasons for your decision."
|
58 |
evaluation = ""
|
59 |
+
for message in client.chat_completion(
|
60 |
+
[{"role": "system", "content": "You are a legal expert evaluating the arguments presented by the prosecution and the defense."},
|
61 |
+
{"role": "user", "content": prompt}],
|
62 |
+
max_tokens=512,
|
63 |
+
stream=True,
|
64 |
+
temperature=0.6,
|
65 |
+
top_p=0.95,
|
66 |
+
):
|
67 |
+
token = message.choices[0].delta.content
|
68 |
+
if token is not None:
|
69 |
+
evaluation += token
|
|
|
|
|
|
|
|
|
70 |
return evaluation
|
71 |
|
72 |
+
def determine_winner(outcome):
|
73 |
+
if "Prosecutor" in outcome and "Defense" in outcome:
|
74 |
+
if outcome.count("Prosecutor") > outcome.count("Defense"):
|
75 |
+
return "Prosecutor Wins"
|
76 |
+
else:
|
77 |
+
return "Defense Wins"
|
78 |
+
elif "Prosecutor" in outcome:
|
79 |
return "Prosecutor Wins"
|
80 |
+
elif "Defense" in outcome:
|
81 |
return "Defense Wins"
|
82 |
else:
|
83 |
return "No clear winner"
|
84 |
|
85 |
+
# Custom CSS for a clean layout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
custom_css = """
|
87 |
body {
|
88 |
background-color: #ffffff;
|
|
|
171 |
response2 = response2[:max_length]
|
172 |
|
173 |
outcome = generate_case_outcome(response1, response2)
|
174 |
+
winner = determine_winner(outcome)
|
175 |
|
176 |
+
return response1, response2, history1, history2, shared_history, outcome, winner
|
177 |
+
|
178 |
+
def extract_text_from_pdf(pdf_file):
|
179 |
+
text = ""
|
180 |
+
doc = fitz.open(pdf_file)
|
181 |
+
for page in doc:
|
182 |
+
text += page.get_text()
|
183 |
+
return text
|
184 |
+
|
185 |
+
def ask_about_pdf(pdf_text, question):
|
186 |
+
result = qa_pipeline(question=question, context=pdf_text)
|
187 |
+
return result['answer']
|
188 |
+
|
189 |
+
def update_pdf_gallery_and_extract_text(pdf_files):
|
190 |
+
if len(pdf_files) > 0:
|
191 |
+
pdf_text = extract_text_from_pdf(pdf_files[0].name)
|
192 |
+
else:
|
193 |
+
pdf_text = ""
|
194 |
+
return pdf_files, pdf_text
|
195 |
|
196 |
def get_top_10_cases():
|
197 |
+
# Here, I'm generating a list of 10 example cases. In a real-world scenario, you'd fetch this data from a database or another source.
|
198 |
+
cases = [
|
199 |
+
{"name": "Smith v. Jones", "number": "CA12345"},
|
200 |
+
{"name": "Johnson v. State", "number": "CA67890"},
|
201 |
+
{"name": "Doe v. Roe", "number": "CA11223"},
|
202 |
+
{"name": "Brown v. Davis", "number": "CA44556"},
|
203 |
+
{"name": "Williams v. Taylor", "number": "CA77889"},
|
204 |
+
{"name": "Miller v. Anderson", "number": "CA99100"},
|
205 |
+
{"name": "Davis v. Martin", "number": "CA22334"},
|
206 |
+
{"name": "Garcia v. Clark", "number": "CA55667"},
|
207 |
+
{"name": "Rodriguez v. Lewis", "number": "CA88990"},
|
208 |
+
{"name": "Martinez v. Lee", "number": "CA10112"}
|
209 |
+
]
|
210 |
+
return "\n".join([f"{case['name']} - Case Number: {case['number']}" for case in cases])
|
211 |
+
|
212 |
+
def add_message(history, message):
|
213 |
+
for x in message["files"]:
|
214 |
+
history.append(((x,), None))
|
215 |
+
if message["text"] is not None:
|
216 |
+
history.append((message["text"], None))
|
217 |
+
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
218 |
+
|
219 |
+
def bot(history):
|
220 |
+
system_message = "You are a helpful assistant."
|
221 |
+
messages = [{"role": "system", "content": system_message}]
|
222 |
+
for val in history:
|
223 |
+
if val[0]:
|
224 |
+
messages.append({"role": "user", "content": val[0]})
|
225 |
+
if val[1]:
|
226 |
+
messages.append({"role": "assistant", "content": val[1]})
|
227 |
response = ""
|
228 |
for message in client.chat_completion(
|
229 |
+
messages,
|
230 |
+
max_tokens=150,
|
|
|
231 |
stream=True,
|
232 |
temperature=0.6,
|
233 |
top_p=0.95,
|
|
|
235 |
token = message.choices[0].delta.content
|
236 |
if token is not None:
|
237 |
response += token
|
238 |
+
history[-1][1] = response
|
239 |
+
yield history
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
def print_like_dislike(x: gr.LikeData):
|
242 |
print(x.index, x.value, x.liked)
|
|
|
248 |
return history1, history2, shared_history
|
249 |
|
250 |
def ask_about_case_outcome(shared_history, question):
|
251 |
+
result = qa_pipeline(question=question, context=shared_history)
|
252 |
+
return result['answer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
with gr.Blocks(css=custom_css) as demo:
|
255 |
history1 = gr.State([])
|
256 |
history2 = gr.State([])
|
257 |
shared_history = gr.State([])
|
258 |
+
pdf_files = gr.State([])
|
259 |
+
pdf_text = gr.State("")
|
260 |
top_10_cases = gr.State("")
|
261 |
|
262 |
with gr.Tab("Argument Evaluation"):
|
263 |
with gr.Row():
|
264 |
with gr.Column(scale=1):
|
265 |
top_10_btn = gr.Button("Give me the top 10 cases")
|
266 |
+
top_10_output = gr.Markdown(elem_classes=["scroll-box"])
|
267 |
top_10_btn.click(get_top_10_cases, outputs=top_10_output)
|
268 |
with gr.Column(scale=2):
|
269 |
message = gr.Textbox(label="Case to Argue")
|
|
|
284 |
with gr.Column(scale=1):
|
285 |
defense_score_color = gr.HTML()
|
286 |
|
287 |
+
shared_argument = gr.Textbox(label="Case Outcome", interactive=True, elem_classes=["scroll-box"])
|
288 |
+
winner = gr.Textbox(label="Winner", interactive=False, elem_classes=["scroll-box"])
|
289 |
|
290 |
with gr.Row():
|
291 |
submit_btn = gr.Button("Argue")
|
292 |
clear_btn = gr.Button("Clear and Reset")
|
293 |
save_btn = gr.Button("Save Conversation")
|
294 |
|
295 |
+
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_argument, winner])
|
296 |
+
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, shared_argument, winner])
|
297 |
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
|
298 |
+
|
299 |
+
# Inner HTML for asking about the case outcome
|
300 |
+
with gr.Row():
|
301 |
+
case_question = gr.Textbox(label="Ask a Question about the Case Outcome")
|
302 |
+
case_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
|
303 |
+
ask_case_btn = gr.Button("Ask")
|
304 |
+
|
305 |
+
ask_case_btn.click(ask_about_case_outcome, inputs=[shared_history, case_question], outputs=case_answer)
|
306 |
+
|
307 |
+
with gr.Tab("PDF Management"):
|
308 |
+
pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
|
309 |
+
pdf_gallery = gr.Gallery(label="PDF Gallery")
|
310 |
+
pdf_view = gr.Textbox(label="PDF Content", interactive=False, elem_classes=["scroll-box"])
|
311 |
+
pdf_question = gr.Textbox(label="Ask a Question about the PDF")
|
312 |
+
pdf_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
|
313 |
+
pdf_upload_btn = gr.Button("Update PDF Gallery")
|
314 |
+
pdf_ask_btn = gr.Button("Ask")
|
315 |
+
|
316 |
+
pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text])
|
317 |
+
pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view)
|
318 |
+
pdf_ask_btn.click(ask_about_pdf, inputs=[pdf_text, pdf_question], outputs=pdf_answer)
|
319 |
+
|
320 |
+
with gr.Tab("Chatbot"):
|
321 |
+
chatbot = gr.Chatbot(
|
322 |
+
[],
|
323 |
+
elem_id="chatbot",
|
324 |
+
bubble_full_width=False
|
|
|
|
|
|
|
325 |
)
|
326 |
|
327 |
+
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
|
328 |
|
329 |
+
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
|
330 |
+
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
|
331 |
+
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
|
|
|
332 |
|
333 |
+
chatbot.like(print_like_dislike, None, None)
|
334 |
|
335 |
demo.queue()
|
336 |
demo.launch()
|