|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.svm import SVC |
|
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
body { |
|
background-color: #1E1E1E; |
|
color: #FFFFFF; |
|
font-family: 'Arial', sans-serif; |
|
} |
|
.stButton>button { |
|
background-color: #4A90E2; |
|
color: #FFFFFF; |
|
border-radius: 15px; |
|
padding: 12px 24px; |
|
font-size: 16px; |
|
font-weight: bold; |
|
} |
|
.title { |
|
color: #64FFDA; |
|
text-shadow: 1px 1px #FF4C4C; |
|
} |
|
.stTabs [data-testid="stHorizontalBlock"] { |
|
position: sticky; |
|
top: 0; |
|
background-color: #1E1E1E; |
|
z-index: 10; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
st.title("๐ฒ Telco Customer Churn Prediction") |
|
st.markdown("<h2 class='title'>Predict whether a customer will churn! ๐</h2>", unsafe_allow_html=True) |
|
|
|
|
|
file_path = 'WA_Fn-UseC_-Telco-Customer-Churn.csv' |
|
df = pd.read_csv(file_path) |
|
|
|
|
|
df = df[['tenure', 'MonthlyCharges', 'TotalCharges', 'Churn']] |
|
df = df.replace(" ", np.nan).dropna() |
|
df['TotalCharges'] = pd.to_numeric(df['TotalCharges']) |
|
df['Churn'] = df['Churn'].apply(lambda x: 1 if x == 'Yes' else 0) |
|
|
|
|
|
X = df.drop('Churn', axis=1) |
|
y = df['Churn'] |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
scaler = StandardScaler() |
|
X_train = scaler.fit_transform(X_train) |
|
X_test = scaler.transform(X_test) |
|
|
|
|
|
model = SVC(kernel='linear', probability=True, random_state=42) |
|
model.fit(X_train, y_train) |
|
y_pred = model.predict(X_test) |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["๐ Dataset", "๐ Visualization", "๐ฎ Prediction"]) |
|
|
|
|
|
with tab1: |
|
st.write("### ๐ Dataset Preview") |
|
st.dataframe(df.head()) |
|
|
|
|
|
with tab2: |
|
|
|
accuracy = accuracy_score(y_test, y_pred) |
|
st.write("### ๐ฅ Model Performance") |
|
st.write(f"**โ
Model Accuracy:** {accuracy:.2f}") |
|
|
|
|
|
st.write("### ๐ Performance Breakdown") |
|
conf_matrix = confusion_matrix(y_test, y_pred) |
|
st.write("Confusion Matrix:") |
|
fig, ax = plt.subplots() |
|
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax) |
|
st.pyplot(fig) |
|
|
|
|
|
with tab3: |
|
st.write("### ๐ฎ Predict Customer Churn") |
|
st.markdown("Adjust the stats below to simulate a customer scenario!") |
|
|
|
tenure = st.slider("Customer Tenure (Months)", min_value=0, max_value=72, value=12) |
|
monthly_charges = st.slider("Monthly Charges ($)", min_value=0, max_value=200, value=50) |
|
total_charges = st.slider("Total Charges ($)", min_value=0, max_value=10000, value=600) |
|
|
|
if st.button("โจ Predict Churn"): |
|
input_data = scaler.transform([[tenure, monthly_charges, total_charges]]) |
|
prediction = model.predict(input_data)[0] |
|
prediction_proba = model.predict_proba(input_data)[0] |
|
|
|
st.subheader("๐ฎ Prediction Result") |
|
result_text = "๐จ Customer is likely to CHURN!" if prediction == 1 else "โ
Customer is likely to STAY." |
|
st.success(result_text) if prediction == 0 else st.error(result_text) |
|
st.write(f"Confidence: {prediction_proba[prediction]:.2f}") |
|
|
|
|
|
st.write("### ๐ Churn Probability Breakdown") |
|
fig, ax = plt.subplots() |
|
ax.bar(["Stay", "Churn"], [prediction_proba[0], prediction_proba[1]], color=["#64FFDA", "#FF4C4C"]) |
|
ax.set_ylim(0, 1) |
|
ax.set_ylabel("Probability") |
|
ax.set_title("Customer Churn Probability") |
|
st.pyplot(fig) |
|
|