File size: 4,981 Bytes
fc29f39
 
 
 
 
 
 
 
 
 
b7adb60
fc29f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7adb60
 
 
 
 
 
fc29f39
 
 
 
 
 
b7adb60
 
fc29f39
 
 
 
 
b7adb60
fc29f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7adb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc29f39
b7adb60
 
 
fc29f39
b7adb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# Custom Streamlit styling with sticky navbar
st.markdown(
    """
    <style>
    body {
        background-color: #1E1E1E;
        color: #FFFFFF;
        font-family: 'Arial', sans-serif;
    }
    .stButton>button {
        background-color: #4A90E2;
        color: #FFFFFF;
        border-radius: 15px;
        padding: 12px 24px;
        font-size: 16px;
        font-weight: bold;
    }
    .title {
        color: #64FFDA;
        text-shadow: 1px 1px #FF4C4C;
    }
    .stTabs [data-testid="stHorizontalBlock"] {
        position: sticky;
        top: 0;
        background-color: #1E1E1E;
        z-index: 10;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Load the League of Legends dataset
st.title("League of Legends Game Win Predictor")
st.markdown("#### Predict whether the Blue Team will dominate the game using Random Forest Classifier", unsafe_allow_html=True)

# Load dataset directly
file_path = 'high_diamond_ranked_10min.csv'
df = pd.read_csv(file_path)

# Preprocess data and train model (runs once)
df = df[['blueFirstBlood', 'blueKills', 'blueDeaths', 'blueAssists', 'blueTotalGold', 'blueTotalExperience', 'blueDragons', 'blueHeralds', 'blueTowersDestroyed', 'blueWins']]
df = df.dropna()

# Define features and target
X = df.drop('blueWins', axis=1)
y = df['blueWins']

# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Scale data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Train Logistic Regression Model
model = LogisticRegression(random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

# Top Tabs Navigation
tab1, tab2, tab3 = st.tabs(["๐Ÿ“Š Dataset", "๐Ÿ“ˆ Visualization", "๐ŸŽฎ Prediction"])

# Dataset Section
with tab1:
    st.write("### ๐Ÿ“Š Dataset Preview")
    st.dataframe(df.head())

# Visualization Section
with tab2:
    # Display model performance
    accuracy = accuracy_score(y_test, y_pred)
    st.write("### ๐Ÿ”ฅ Model Performance")
    st.write(f"**โœ… Model Accuracy:** {accuracy:.2f}")

    # Visualizing performance
    st.write("### ๐Ÿ“Š Performance Breakdown")
    conf_matrix = confusion_matrix(y_test, y_pred)
    st.write("Confusion Matrix:")
    fig, ax = plt.subplots()
    sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax)
    st.pyplot(fig)

    # Feature Importance Visualization
    st.write("### ๐Ÿ” Feature Importance")
    feature_importance = abs(model.coef_[0])
    features = X.columns
    fig, ax = plt.subplots()
    ax.barh(features, feature_importance, color='#4A90E2')
    ax.set_title("Feature Importance for Blue Team Win Prediction")
    ax.set_xlabel("Importance")
    st.pyplot(fig)

# Prediction Section
with tab3:
    st.write("### ๐ŸŽฎ Predict Game Outcome")
    st.markdown("Adjust the stats below to simulate a match scenario!")

    first_blood = st.selectbox("Did Blue Team Get First Blood?", [0, 1])
    kills = st.slider("Blue Team Kills", min_value=0, max_value=50, value=5)
    deaths = st.slider("Blue Team Deaths", min_value=0, max_value=50, value=5)
    assists = st.slider("Blue Team Assists", min_value=0, max_value=50, value=10)
    total_gold = st.slider("Blue Team Total Gold", min_value=10000, max_value=100000, value=50000)
    total_exp = st.slider("Blue Team Total Experience", min_value=10000, max_value=100000, value=50000)
    dragons = st.slider("Blue Team Dragons Taken", min_value=0, max_value=5, value=1)
    heralds = st.slider("Blue Team Heralds Taken", min_value=0, max_value=2, value=0)
    towers = st.slider("Blue Team Towers Destroyed", min_value=0, max_value=11, value=2)

    if st.button("โœจ Predict Win"):
        input_data = scaler.transform([[first_blood, kills, deaths, assists, total_gold, total_exp, dragons, heralds, towers]])
        prediction = model.predict(input_data)[0]
        prediction_proba = model.predict_proba(input_data)[0]

        st.subheader("๐Ÿ”ฎ Prediction Result")
        result_text = "๐Ÿ… Blue Team is likely to WIN! ๐ŸŽ‰" if prediction == 1 else "โš”๏ธ Blue Team is likely to LOSE. ๐Ÿ˜ž"
        st.success(result_text) if prediction == 1 else st.error(result_text)
        st.write(f"Confidence: {prediction_proba[prediction]:.2f}")

        # Win/Loss Bar Chart
        st.write("### ๐Ÿ“Š Win Probability Breakdown")
        fig, ax = plt.subplots()
        ax.bar(["Win", "Lose"], [prediction_proba[1], prediction_proba[0]], color=["#64FFDA", "#FF4C4C"])
        ax.set_ylim(0, 1)
        ax.set_ylabel("Probability")
        ax.set_title("Blue Team Win/Loss Probability")
        st.pyplot(fig)