File size: 4,981 Bytes
fc29f39 b7adb60 fc29f39 b7adb60 fc29f39 b7adb60 fc29f39 b7adb60 fc29f39 b7adb60 fc29f39 b7adb60 fc29f39 b7adb60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Custom Streamlit styling with sticky navbar
st.markdown(
"""
<style>
body {
background-color: #1E1E1E;
color: #FFFFFF;
font-family: 'Arial', sans-serif;
}
.stButton>button {
background-color: #4A90E2;
color: #FFFFFF;
border-radius: 15px;
padding: 12px 24px;
font-size: 16px;
font-weight: bold;
}
.title {
color: #64FFDA;
text-shadow: 1px 1px #FF4C4C;
}
.stTabs [data-testid="stHorizontalBlock"] {
position: sticky;
top: 0;
background-color: #1E1E1E;
z-index: 10;
}
</style>
""",
unsafe_allow_html=True
)
# Load the League of Legends dataset
st.title("League of Legends Game Win Predictor")
st.markdown("#### Predict whether the Blue Team will dominate the game using Random Forest Classifier", unsafe_allow_html=True)
# Load dataset directly
file_path = 'high_diamond_ranked_10min.csv'
df = pd.read_csv(file_path)
# Preprocess data and train model (runs once)
df = df[['blueFirstBlood', 'blueKills', 'blueDeaths', 'blueAssists', 'blueTotalGold', 'blueTotalExperience', 'blueDragons', 'blueHeralds', 'blueTowersDestroyed', 'blueWins']]
df = df.dropna()
# Define features and target
X = df.drop('blueWins', axis=1)
y = df['blueWins']
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scale data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Train Logistic Regression Model
model = LogisticRegression(random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Top Tabs Navigation
tab1, tab2, tab3 = st.tabs(["๐ Dataset", "๐ Visualization", "๐ฎ Prediction"])
# Dataset Section
with tab1:
st.write("### ๐ Dataset Preview")
st.dataframe(df.head())
# Visualization Section
with tab2:
# Display model performance
accuracy = accuracy_score(y_test, y_pred)
st.write("### ๐ฅ Model Performance")
st.write(f"**โ
Model Accuracy:** {accuracy:.2f}")
# Visualizing performance
st.write("### ๐ Performance Breakdown")
conf_matrix = confusion_matrix(y_test, y_pred)
st.write("Confusion Matrix:")
fig, ax = plt.subplots()
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax)
st.pyplot(fig)
# Feature Importance Visualization
st.write("### ๐ Feature Importance")
feature_importance = abs(model.coef_[0])
features = X.columns
fig, ax = plt.subplots()
ax.barh(features, feature_importance, color='#4A90E2')
ax.set_title("Feature Importance for Blue Team Win Prediction")
ax.set_xlabel("Importance")
st.pyplot(fig)
# Prediction Section
with tab3:
st.write("### ๐ฎ Predict Game Outcome")
st.markdown("Adjust the stats below to simulate a match scenario!")
first_blood = st.selectbox("Did Blue Team Get First Blood?", [0, 1])
kills = st.slider("Blue Team Kills", min_value=0, max_value=50, value=5)
deaths = st.slider("Blue Team Deaths", min_value=0, max_value=50, value=5)
assists = st.slider("Blue Team Assists", min_value=0, max_value=50, value=10)
total_gold = st.slider("Blue Team Total Gold", min_value=10000, max_value=100000, value=50000)
total_exp = st.slider("Blue Team Total Experience", min_value=10000, max_value=100000, value=50000)
dragons = st.slider("Blue Team Dragons Taken", min_value=0, max_value=5, value=1)
heralds = st.slider("Blue Team Heralds Taken", min_value=0, max_value=2, value=0)
towers = st.slider("Blue Team Towers Destroyed", min_value=0, max_value=11, value=2)
if st.button("โจ Predict Win"):
input_data = scaler.transform([[first_blood, kills, deaths, assists, total_gold, total_exp, dragons, heralds, towers]])
prediction = model.predict(input_data)[0]
prediction_proba = model.predict_proba(input_data)[0]
st.subheader("๐ฎ Prediction Result")
result_text = "๐
Blue Team is likely to WIN! ๐" if prediction == 1 else "โ๏ธ Blue Team is likely to LOSE. ๐"
st.success(result_text) if prediction == 1 else st.error(result_text)
st.write(f"Confidence: {prediction_proba[prediction]:.2f}")
# Win/Loss Bar Chart
st.write("### ๐ Win Probability Breakdown")
fig, ax = plt.subplots()
ax.bar(["Win", "Lose"], [prediction_proba[1], prediction_proba[0]], color=["#64FFDA", "#FF4C4C"])
ax.set_ylim(0, 1)
ax.set_ylabel("Probability")
ax.set_title("Blue Team Win/Loss Probability")
st.pyplot(fig)
|