Michael Rey
added changes
b7adb60
raw
history blame
4.98 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Custom Streamlit styling with sticky navbar
st.markdown(
"""
<style>
body {
background-color: #1E1E1E;
color: #FFFFFF;
font-family: 'Arial', sans-serif;
}
.stButton>button {
background-color: #4A90E2;
color: #FFFFFF;
border-radius: 15px;
padding: 12px 24px;
font-size: 16px;
font-weight: bold;
}
.title {
color: #64FFDA;
text-shadow: 1px 1px #FF4C4C;
}
.stTabs [data-testid="stHorizontalBlock"] {
position: sticky;
top: 0;
background-color: #1E1E1E;
z-index: 10;
}
</style>
""",
unsafe_allow_html=True
)
# Load the League of Legends dataset
st.title("League of Legends Game Win Predictor")
st.markdown("#### Predict whether the Blue Team will dominate the game using Random Forest Classifier", unsafe_allow_html=True)
# Load dataset directly
file_path = 'high_diamond_ranked_10min.csv'
df = pd.read_csv(file_path)
# Preprocess data and train model (runs once)
df = df[['blueFirstBlood', 'blueKills', 'blueDeaths', 'blueAssists', 'blueTotalGold', 'blueTotalExperience', 'blueDragons', 'blueHeralds', 'blueTowersDestroyed', 'blueWins']]
df = df.dropna()
# Define features and target
X = df.drop('blueWins', axis=1)
y = df['blueWins']
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scale data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Train Logistic Regression Model
model = LogisticRegression(random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Top Tabs Navigation
tab1, tab2, tab3 = st.tabs(["๐Ÿ“Š Dataset", "๐Ÿ“ˆ Visualization", "๐ŸŽฎ Prediction"])
# Dataset Section
with tab1:
st.write("### ๐Ÿ“Š Dataset Preview")
st.dataframe(df.head())
# Visualization Section
with tab2:
# Display model performance
accuracy = accuracy_score(y_test, y_pred)
st.write("### ๐Ÿ”ฅ Model Performance")
st.write(f"**โœ… Model Accuracy:** {accuracy:.2f}")
# Visualizing performance
st.write("### ๐Ÿ“Š Performance Breakdown")
conf_matrix = confusion_matrix(y_test, y_pred)
st.write("Confusion Matrix:")
fig, ax = plt.subplots()
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax)
st.pyplot(fig)
# Feature Importance Visualization
st.write("### ๐Ÿ” Feature Importance")
feature_importance = abs(model.coef_[0])
features = X.columns
fig, ax = plt.subplots()
ax.barh(features, feature_importance, color='#4A90E2')
ax.set_title("Feature Importance for Blue Team Win Prediction")
ax.set_xlabel("Importance")
st.pyplot(fig)
# Prediction Section
with tab3:
st.write("### ๐ŸŽฎ Predict Game Outcome")
st.markdown("Adjust the stats below to simulate a match scenario!")
first_blood = st.selectbox("Did Blue Team Get First Blood?", [0, 1])
kills = st.slider("Blue Team Kills", min_value=0, max_value=50, value=5)
deaths = st.slider("Blue Team Deaths", min_value=0, max_value=50, value=5)
assists = st.slider("Blue Team Assists", min_value=0, max_value=50, value=10)
total_gold = st.slider("Blue Team Total Gold", min_value=10000, max_value=100000, value=50000)
total_exp = st.slider("Blue Team Total Experience", min_value=10000, max_value=100000, value=50000)
dragons = st.slider("Blue Team Dragons Taken", min_value=0, max_value=5, value=1)
heralds = st.slider("Blue Team Heralds Taken", min_value=0, max_value=2, value=0)
towers = st.slider("Blue Team Towers Destroyed", min_value=0, max_value=11, value=2)
if st.button("โœจ Predict Win"):
input_data = scaler.transform([[first_blood, kills, deaths, assists, total_gold, total_exp, dragons, heralds, towers]])
prediction = model.predict(input_data)[0]
prediction_proba = model.predict_proba(input_data)[0]
st.subheader("๐Ÿ”ฎ Prediction Result")
result_text = "๐Ÿ… Blue Team is likely to WIN! ๐ŸŽ‰" if prediction == 1 else "โš”๏ธ Blue Team is likely to LOSE. ๐Ÿ˜ž"
st.success(result_text) if prediction == 1 else st.error(result_text)
st.write(f"Confidence: {prediction_proba[prediction]:.2f}")
# Win/Loss Bar Chart
st.write("### ๐Ÿ“Š Win Probability Breakdown")
fig, ax = plt.subplots()
ax.bar(["Win", "Lose"], [prediction_proba[1], prediction_proba[0]], color=["#64FFDA", "#FF4C4C"])
ax.set_ylim(0, 1)
ax.set_ylabel("Probability")
ax.set_title("Blue Team Win/Loss Probability")
st.pyplot(fig)