|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
body { |
|
background-color: #1E1E1E; |
|
color: #FFFFFF; |
|
font-family: 'Arial', sans-serif; |
|
} |
|
.stButton>button { |
|
background-color: #4A90E2; |
|
color: #FFFFFF; |
|
border-radius: 15px; |
|
padding: 12px 24px; |
|
font-size: 16px; |
|
font-weight: bold; |
|
} |
|
.title { |
|
color: #64FFDA; |
|
text-shadow: 1px 1px #FF4C4C; |
|
} |
|
.stTabs [data-testid="stHorizontalBlock"] { |
|
position: sticky; |
|
top: 0; |
|
background-color: #1E1E1E; |
|
z-index: 10; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
st.title("League of Legends Game Win Predictor") |
|
st.markdown("#### Predict whether the Blue Team will dominate the game using Random Forest Classifier", unsafe_allow_html=True) |
|
|
|
|
|
file_path = 'high_diamond_ranked_10min.csv' |
|
df = pd.read_csv(file_path) |
|
|
|
|
|
df = df[['blueFirstBlood', 'blueKills', 'blueDeaths', 'blueAssists', 'blueTotalGold', 'blueTotalExperience', 'blueDragons', 'blueHeralds', 'blueTowersDestroyed', 'blueWins']] |
|
df = df.dropna() |
|
|
|
|
|
X = df.drop('blueWins', axis=1) |
|
y = df['blueWins'] |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
scaler = StandardScaler() |
|
X_train = scaler.fit_transform(X_train) |
|
X_test = scaler.transform(X_test) |
|
|
|
|
|
model = LogisticRegression(random_state=42) |
|
model.fit(X_train, y_train) |
|
y_pred = model.predict(X_test) |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["๐ Dataset", "๐ Visualization", "๐ฎ Prediction"]) |
|
|
|
|
|
with tab1: |
|
st.write("### ๐ Dataset Preview") |
|
st.dataframe(df.head()) |
|
|
|
|
|
with tab2: |
|
|
|
accuracy = accuracy_score(y_test, y_pred) |
|
st.write("### ๐ฅ Model Performance") |
|
st.write(f"**โ
Model Accuracy:** {accuracy:.2f}") |
|
|
|
|
|
st.write("### ๐ Performance Breakdown") |
|
conf_matrix = confusion_matrix(y_test, y_pred) |
|
st.write("Confusion Matrix:") |
|
fig, ax = plt.subplots() |
|
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax) |
|
st.pyplot(fig) |
|
|
|
|
|
st.write("### ๐ Feature Importance") |
|
feature_importance = abs(model.coef_[0]) |
|
features = X.columns |
|
fig, ax = plt.subplots() |
|
ax.barh(features, feature_importance, color='#4A90E2') |
|
ax.set_title("Feature Importance for Blue Team Win Prediction") |
|
ax.set_xlabel("Importance") |
|
st.pyplot(fig) |
|
|
|
|
|
with tab3: |
|
st.write("### ๐ฎ Predict Game Outcome") |
|
st.markdown("Adjust the stats below to simulate a match scenario!") |
|
|
|
first_blood = st.selectbox("Did Blue Team Get First Blood?", [0, 1]) |
|
kills = st.slider("Blue Team Kills", min_value=0, max_value=50, value=5) |
|
deaths = st.slider("Blue Team Deaths", min_value=0, max_value=50, value=5) |
|
assists = st.slider("Blue Team Assists", min_value=0, max_value=50, value=10) |
|
total_gold = st.slider("Blue Team Total Gold", min_value=10000, max_value=100000, value=50000) |
|
total_exp = st.slider("Blue Team Total Experience", min_value=10000, max_value=100000, value=50000) |
|
dragons = st.slider("Blue Team Dragons Taken", min_value=0, max_value=5, value=1) |
|
heralds = st.slider("Blue Team Heralds Taken", min_value=0, max_value=2, value=0) |
|
towers = st.slider("Blue Team Towers Destroyed", min_value=0, max_value=11, value=2) |
|
|
|
if st.button("โจ Predict Win"): |
|
input_data = scaler.transform([[first_blood, kills, deaths, assists, total_gold, total_exp, dragons, heralds, towers]]) |
|
prediction = model.predict(input_data)[0] |
|
prediction_proba = model.predict_proba(input_data)[0] |
|
|
|
st.subheader("๐ฎ Prediction Result") |
|
result_text = "๐
Blue Team is likely to WIN! ๐" if prediction == 1 else "โ๏ธ Blue Team is likely to LOSE. ๐" |
|
st.success(result_text) if prediction == 1 else st.error(result_text) |
|
st.write(f"Confidence: {prediction_proba[prediction]:.2f}") |
|
|
|
|
|
st.write("### ๐ Win Probability Breakdown") |
|
fig, ax = plt.subplots() |
|
ax.bar(["Win", "Lose"], [prediction_proba[1], prediction_proba[0]], color=["#64FFDA", "#FF4C4C"]) |
|
ax.set_ylim(0, 1) |
|
ax.set_ylabel("Probability") |
|
ax.set_title("Blue Team Win/Loss Probability") |
|
st.pyplot(fig) |
|
|