|
# Modal |
|
|
|
This page covers how to use the Modal ecosystem within LangChain. |
|
It is broken into two parts: installation and setup, and then references to specific Modal wrappers. |
|
|
|
## Installation and Setup |
|
- Install with `pip install modal-client` |
|
- Run `modal token new` |
|
|
|
## Define your Modal Functions and Webhooks |
|
|
|
You must include a prompt. There is a rigid response structure. |
|
|
|
```python |
|
class Item(BaseModel): |
|
prompt: str |
|
|
|
@stub.webhook(method="POST") |
|
def my_webhook(item: Item): |
|
return {"prompt": my_function.call(item.prompt)} |
|
``` |
|
|
|
An example with GPT2: |
|
|
|
```python |
|
from pydantic import BaseModel |
|
|
|
import modal |
|
|
|
stub = modal.Stub("example-get-started") |
|
|
|
volume = modal.SharedVolume().persist("gpt2_model_vol") |
|
CACHE_PATH = "/root/model_cache" |
|
|
|
@stub.function( |
|
gpu="any", |
|
image=modal.Image.debian_slim().pip_install( |
|
"tokenizers", "transformers", "torch", "accelerate" |
|
), |
|
shared_volumes={CACHE_PATH: volume}, |
|
retries=3, |
|
) |
|
def run_gpt2(text: str): |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel |
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') |
|
model = GPT2LMHeadModel.from_pretrained('gpt2') |
|
encoded_input = tokenizer(text, return_tensors='pt').input_ids |
|
output = model.generate(encoded_input, max_length=50, do_sample=True) |
|
return tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
class Item(BaseModel): |
|
prompt: str |
|
|
|
@stub.webhook(method="POST") |
|
def get_text(item: Item): |
|
return {"prompt": run_gpt2.call(item.prompt)} |
|
``` |
|
|
|
## Wrappers |
|
|
|
### LLM |
|
|
|
There exists an Modal LLM wrapper, which you can access with |
|
```python |
|
from langchain.llms import Modal |
|
``` |