Spaces:
Runtime error
Runtime error
File size: 7,359 Bytes
fb096d2 0a0f99c fb096d2 fd2f716 fb096d2 cd47483 fb096d2 714b133 fb096d2 cd47483 fb096d2 714b133 fb096d2 0a0f99c fb096d2 cd47483 fb096d2 cd47483 fb096d2 714b133 fb096d2 0a0f99c fb096d2 cd47483 fb096d2 0a0f99c fb096d2 cd47483 fb096d2 714b133 fb096d2 0a0f99c fb096d2 0a0f99c fb096d2 cd47483 fb096d2 cd47483 fb096d2 714b133 fb096d2 0a0f99c fb096d2 0a0f99c fb096d2 0a0f99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from datasets import get_dataset_config_names, get_dataset_split_names
from distilabel.llms import InferenceEndpointsLLM
from distilabel.steps.tasks import (
TextGeneration,
UltraFeedback,
)
from synthetic_dataset_generator.constants import BASE_URL, MODEL
from synthetic_dataset_generator.pipelines.base import _get_next_api_key
from synthetic_dataset_generator.utils import extract_column_names
def get_ultrafeedback_evaluator(aspect, is_sample):
ultrafeedback_evaluator = UltraFeedback(
llm=InferenceEndpointsLLM(
model_id=MODEL,
base_url=BASE_URL,
api_key=_get_next_api_key(),
generation_kwargs={
"temperature": 0.01,
"max_new_tokens": 256 if is_sample else 2048,
},
),
aspect=aspect,
)
ultrafeedback_evaluator.load()
return ultrafeedback_evaluator
def get_custom_evaluator(prompt_template, structured_output, columns, is_sample):
custom_evaluator = TextGeneration(
llm=InferenceEndpointsLLM(
model_id=MODEL,
base_url=BASE_URL,
api_key=_get_next_api_key(),
structured_output={"format": "json", "schema": structured_output},
generation_kwargs={
"temperature": 0.01,
"max_new_tokens": 256 if is_sample else 2048,
},
),
template=prompt_template,
columns=columns,
)
custom_evaluator.load()
return custom_evaluator
def generate_ultrafeedback_pipeline_code(
repo_id, subset, split, aspects, instruction_column, response_columns, num_rows
):
if len(aspects) == 1:
code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
import os
from datasets import load_dataset
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromDicts
from distilabel.steps.tasks import UltraFeedback
from distilabel.llms import InferenceEndpointsLLM
MODEL = "{MODEL}"
BASE_URL = "{BASE_URL}"
os.environ["API_KEY"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}[:{num_rows}]")
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries
with Pipeline(name="ultrafeedback") as pipeline:
load_the_dataset = LoadDataFromDicts(
data = data,
)
ultrafeedback_evaluator = UltraFeedback(
llm=InferenceEndpointsLLM(
model_id=MODEL,
base_url=BASE_URL,
api_key=os.environ["API_KEY"],
generation_kwargs={{
"temperature": 0.01,
"max_new_tokens": 2048,
}},
),
aspect=aspect,
)
load_the_dataset >> ultrafeedback_evaluator
if __name__ == "__main__":
distiset = pipeline.run()
"""
else:
code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
import os
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromDicts, CombineOutputs
from distilabel.steps.tasks import UltraFeedback
from distilabel.llms import InferenceEndpointsLLM
MODEL = "{MODEL}"
BASE_URL = "{BASE_URL}"
os.environ["BASE_URL"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}")
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries
with Pipeline(name="ultrafeedback") as pipeline:
load_the_dataset = LoadDataFromDicts(
data = data,
)
tasks = []
for aspect in aspects:
evaluate_responses = UltraFeedback(
name=f"evaluate-responses-{{aspect}}",
aspect=aspect,
llm=InferenceEndpointsLLM(
model_id=MODEL,
base_url=BASE_URL,
api_key=os.environ["BASE_URL"],
generation_kwargs={{
"temperature": 0.01,
"max_new_tokens": 2048,
}},
output_mappings={{
"ratings": f"ratings_{{aspect}}",
"types": f"type_{{aspect}}",
"rationales": f"rationales_for_types_{{aspect}}",
"rationales-for-ratings": f"rationales_for_ratings_{{aspect}}",
}} if aspect in ["truthfulness", "helpfulness"] else {{"rationales": f"rationales_{{aspect}}", "ratings": f"ratings_{{aspect}}"}},
)
tasks.append(evaluate_responses)
combine_outputs = CombineOutputs()
load_the_dataset >> tasks >> combine_outputs
if __name__ == "__main__":
distiset = pipeline.run()
"""
return code
def generate_custom_pipeline_code(
repo_id, subset, split, prompt_template, structured_output, num_rows
):
columns = extract_column_names(structured_output)
code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints, instructor]`
import os
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromHub
from distilabel.steps.tasks import TextGeneration
from distilabel.llms import InferenceEndpointsLLM
MODEL = "{MODEL}"
BASE_URL = "{BASE_URL}"
CUSTOM_TEMPLATE = "{prompt_template}"
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
with Pipeline(name="custom-evaluation") as pipeline:
load_the_dataset = LoadDataFromHub(
repo_id="{repo_id}",
config="{subset}",
split="{split}",
num_examples={num_rows},
batch_size=2
)
custom_evaluator = TextGeneration(
llm=InferenceEndpointsLLM(
model_id=MODEL,
base_url=BASE_URL,
api_key=os.environ["HF_TOKEN"],
structured_output={{"format": "json", "schema": {structured_output}}},
generation_kwargs={{
"temperature": 0.01,
"max_new_tokens": 2048,
}},
),
template=CUSTOM_TEMPLATE,
columns={columns}
)
load_the_dataset >> custom_evaluator
if __name__ == "__main__":
distiset = pipeline.run()
"""
return code
def generate_pipeline_code(
repo_id,
aspects,
instruction_column,
response_columns,
prompt_template,
structured_output,
num_rows,
eval_type,
):
if repo_id is None:
subset = "default"
split = "train"
else:
subset = get_dataset_config_names(repo_id)[0]
split = get_dataset_split_names(repo_id, subset)[0]
if eval_type == "ultrafeedback":
return generate_ultrafeedback_pipeline_code(
repo_id,
subset,
split,
aspects,
instruction_column,
response_columns,
num_rows,
)
return generate_custom_pipeline_code(
repo_id, subset, split, prompt_template, structured_output, num_rows
)
|