Spaces:
Runtime error
Runtime error
title: Synthetic Data Generator | |
short_description: Build datasets using natural language | |
emoji: 𧬠| |
colorFrom: yellow | |
colorTo: pink | |
sdk: gradio | |
sdk_version: 4.44.1 | |
app_file: app.py | |
pinned: true | |
license: apache-2.0 | |
hf_oauth: true | |
#header: mini | |
hf_oauth_scopes: | |
- read-repos | |
- write-repos | |
- manage-repos | |
- inference-api | |
<img src="https://raw.githubusercontent.com/argilla-io/synthetic-data-generator/main/assets/logo-sdg.svg" alt="Synthetic Data Generator Logo" style="display: block; margin-left: auto; margin-right: auto; width: 50%;"/> | |
<h1 align="center"> | |
<br> | |
𧬠Synthetic Data Generator | |
<br> | |
</h1> | |
<h3 align="center">Build datasets using natural language</h2> | |
![Synthetic Data Generator](https://huggingface.co/spaces/argilla/synthetic-data-generator/resolve/main/assets/ui-full.png) | |
<p align="center"> | |
<a href="https://twitter.com/argilla_io"> | |
<img src="https://img.shields.io/badge/twitter-black?logo=x"/> | |
</a> | |
<a href="https://www.linkedin.com/company/argilla-io"> | |
<img src="https://img.shields.io/badge/linkedin-blue?logo=linkedin"/> | |
</a> | |
<a href="http://hf.co/join/discord"> | |
<img src="https://img.shields.io/badge/Discord-7289DA?&logo=discord&logoColor=white"/> | |
</a> | |
</p> | |
## Introduction | |
Synthetic Data Generator is a tool that allows you to create high-quality datasets for training and fine-tuning language models. It leverages the power of distilabel and LLMs to generate synthetic data tailored to your specific needs. | |
Supported Tasks: | |
- Text Classification | |
- Supervised Fine-Tuning | |
- Judging and rationale evaluation | |
This tool simplifies the process of creating custom datasets, enabling you to: | |
- Describe the characteristics of your desired application | |
- Iterate on sample datasets | |
- Produce full-scale datasets | |
- Push your datasets to the [Hugging Face Hub](https://huggingface.co/datasets?other=datacraft) and/or Argilla | |
By using the Synthetic Data Generator, you can rapidly prototype and create datasets for, accelerating your AI development process. | |
## Installation | |
You can simply install the package with: | |
```bash | |
pip install synthetic-dataset-generator | |
``` | |
### Quickstart | |
```python | |
from synthetic_dataset_generator.app import demo | |
demo.launch() | |
``` | |
### Environment Variables | |
- `HF_TOKEN`: Your [Hugging Face token](https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&tokenType=fineGrained) to push your datasets to the Hugging Face Hub and generate free completions from Hugging Face Inference Endpoints. | |
Optionally, you can set the following environment variables to customize the generation process. | |
- `BASE_URL`: The base URL for any OpenAI compatible API, e.g. `https://api-inference.huggingface.co/v1/`, `https://api.openai.com/v1/`. | |
- `MODEL`: The model to use for generating the dataset, e.g. `meta-llama/Meta-Llama-3.1-8B-Instruct`, `gpt-4o`. | |
- `API_KEY`: The API key to use for the corresponding API, e.g. `hf_...`, `sk-...`. | |
Optionally, you can also push your datasets to Argilla for further curation by setting the following environment variables: | |
- `ARGILLA_API_KEY`: Your Argilla API key to push your datasets to Argilla. | |
- `ARGILLA_API_URL`: Your Argilla API URL to push your datasets to Argilla. | |
### Argilla integration | |
Argilla is a open source tool for data curation. It allows you to annotate and review datasets, and push curated datasets to the Hugging Face Hub. You can easily get started with Argilla by following the [quickstart guide](https://docs.argilla.io/latest/getting_started/quickstart/). | |
![Argilla integration](https://huggingface.co/spaces/argilla/synthetic-data-generator/resolve/main/assets/argilla.png) | |
## Custom synthetic data generation? | |
Each pipeline is based on distilabel, so you can easily change the LLM or the pipeline steps. | |
Check out the [distilabel library](https://github.com/argilla-io/distilabel) for more information. | |
## Development | |
Install the dependencies: | |
```bash | |
python -m venv .venv | |
source .venv/bin/activate | |
pip install -e . | |
``` | |
Run the app: | |
```bash | |
python app.py | |
``` | |